@article{ZVMMF_1993_33_5_a7,
author = {A. V. Razgulin},
title = {The convergence of difference schemes for generalized solutions of the},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {753--765},
year = {1993},
volume = {33},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_5_a7/}
}
TY - JOUR AU - A. V. Razgulin TI - The convergence of difference schemes for generalized solutions of the JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 753 EP - 765 VL - 33 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_5_a7/ LA - ru ID - ZVMMF_1993_33_5_a7 ER -
A. V. Razgulin. The convergence of difference schemes for generalized solutions of the. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 5, pp. 753-765. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_5_a7/
[1] Zakharova I. G., Karamzin Yu. N., Trofimov V. A., “Chislennye metody v zadachakh teplovogo samovozdeistviya opticheskogo izlucheniya”, Matem. modelirovanie. Sovrem. probl. matem. fiz. i vychisl. matem., Nauka, M., 1989, 170–184 | MR
[2] Borisov A. B., “O skhodimosti raznostnykh skhem dlya resheniya nelineinogo uravneniya tipa Shredingera”, Sovrem. probl. matem. modelirovaniya, Izd-vo MGU, M., 1984, 80–96
[3] Drits V. V., “Konservativnye raznostnye skhemy v zadachakh nelineinoi optiki, I”, Differents. ur-niya, 27:7 (1991), 1153–1161 | MR | Zbl
[4] Zakharova I. G., Karamzin Yu. N., Trofimov V. A., “Chislennye metody dlya zadach teplovogo samovozdeistviya opticheskogo izlucheniya”, Matem. modelirovanie, 1:10 (1989), 130–141 | MR | Zbl
[5] Ivanauskas F. F., “Skhodimost i ustoichivost raznostnykh skhem dlya nelineinykh uravnenii shredingerovskogo tipa”, Litovskii matem. sb., 31:4 (1991), 606–621 | MR
[6] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987
[7] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1454–1465 | MR | Zbl
[8] Razgulin A. V., Ob optimalnom upravlenii protsessom nestatsionarnogo teplovogo samovozdeistviya, Dep. v VINITI, No 678-V88, 1988, 28 pp. | MR | Zbl
[9] Razgulin A. V., Issledovanie nekotorykh optimizatsionnykh zadach adaptivnoi optiki v nelineinykh sredakh, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1988
[10] Potapov M. M., Razgulin A. V., “Raznostnye metody v zadachakh optimalnogo upravleniya statsionarnym samovozdeistviem svetovykh puchkov”, Zh. vychisl. matem. i matem. fiz., 30:8 (1990), 1157–1169 | MR
[11] Vorontsov M. A., Shmalgauzen V. I., Printsipy adaptivnoi optiki, Nauka, M., 1985
[12] Akhmanov S. A., Sukhorukov A. P., Khokhlov R. V., “Samofokusirovka i difraktsiya sveta v nelineinoi srede”, Uspekhi fiz. nauk, 93:1 (1967), 19–70
[13] Shen I. R., Printsipy nelineinoi optiki, Nauka, M., 1989
[14] Korobkin V. V., Prokhorov A. M., Serov R. V., Schelev M. Ya., “Niti samofokusirovki kak rezultat dvizheniya fokalnykh tochek”, Pisma v ZhETF, 11 (1970), 153–157
[15] Mokin Yu. Ya., “Setochnyi analog teoremy vlozheniya dlya klassov tipa $W$”, Zh. vychisl. matem. i matem. fiz., 11:6 (1971), 1650–1663