@article{ZVMMF_1993_33_5_a0,
author = {R. Lepp},
title = {Discrete approximation of a problem of continuous programming},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {643--658},
year = {1993},
volume = {33},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_5_a0/}
}
R. Lepp. Discrete approximation of a problem of continuous programming. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 5, pp. 643-658. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_5_a0/
[1] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960 | MR
[2] Reiland T. W., Hanson M. A., “Generalized Kuhn-Tucker conditions and duality for continuous nonlinear programming problems”, J. Math. Analys. and Appl., 74:2 (1980), 578–598 | DOI | MR | Zbl
[3] Zalmai G. J., “Optimality conditions and Lagrangian duality in continuous-time nonlinear programming”, J. Math. Analys. and Appl., 109:2 (1985), 426–452 | DOI | MR | Zbl
[4] Tröltzsch F., “On duality and maximum principle for continuous linear programming problems”, Z. Anal. Anwendugen, 4:6 (1985), 525–535 | MR
[5] Perold A. F., “Extreme points and basic feasible solutions in continuous-time linear programming”, SIAM J. Control and Optimizat., 19:1 (1981), 52–63 | DOI | MR | Zbl
[6] Buie R. N., Abrham J., “Numerical solutions to continuous linear programming problems”, Z. Operat. Res., 17:1 (1973), 107–117 | DOI | MR | Zbl
[7] Abrham J., Luboori L. S., “A numerical method for a class of continuous concave programming problems”, Math. Program., 7:2 (1974), 162–180 | DOI | MR | Zbl
[8] Atkinson K., Graham J., Sloan I., “Piecewise continuous collocation for integral equations”, SIAM J. Numer. Analys., 20:1 (1983), 172–186 | DOI | MR | Zbl
[9] Wendland W., “Die Behandlung von Randwertaufgaben im $R_3$ mit Hilfe von Einfach- und Doppelschichtpotentialen”, Numer. Math., 11 (1968), 380–404 | DOI | MR | Zbl
[10] Aubin P. J., “Approximations des espaces des distributions et des operateurs differentiels”, Bull. Soc. Math. France Mem., 12 (1967), 1–139 | MR
[11] Stummel F., “Diskrete Konvergenz Iinearer Opcratoren, I”, Math. Ann., 190:1 (1970), 45–92 | DOI | MR | Zbl
[12] Vainikko G., “Approximative methods for nonlinear equations”, Nonlinear Analys., 2:6 (1978), 647–687 | DOI | MR | Zbl
[13] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[14] Lepp P., “Usloviya diskretnoi approksimatsii prostranstva suschestvenno ogranichennykh funktsii”, Izv. AN. EstSSR. Fiz.-matem., 37:2 (1988), 204–208 | MR | Zbl
[15] Lepp R., “Approximation to stochastic programs with complete recourse”, SIAM J. Control and Optimizat., 28:2 (1990), 382–394 | DOI | MR | Zbl
[16] Lepp R., “Discrete approximation of integral equations in the space of essentially bounded functions”, Proc. Estonian Acad. Sci. Phys.-Math., 39:3 (1990), 223–229 | MR | Zbl
[17] Vasin V. V., “Diskretnaya approksimatsiya i ustoichivost v ekstremalnykh zadachakh”, Zh. vychisl. matem. i matem. fiz., 22:4 (1982), 824–839 | MR | Zbl
[18] Lepp R., “Diskretnaya approksimatsiya ekstremalnykh zadach s operatornymi ogranicheniyami tipa neravenstv”, Zh. vychisl. matem. i matem. fiz., 30:6 (1990), 817–825 | MR
[19] Vainikko G. M., “O skhodimosti metoda mekhanicheskikh kvadratur dlya integralnykh uravnenii s razryvnymi yadrami”, Sibirskii matem. zh., 12:1 (1971), 40–53 | MR
[20] Krasnoselskii M. A., Zabreiko P. P. i dr., Integralnye operatory v prostranstve summiruemykh funktsii, Nauka, M., 1966
[21] Novikova N. M., “Stokhasticheskii kvazigradientnyi metod resheniya zadach optimizatsii v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 24:3 (1984), 348–362 | MR | Zbl