The problem of calculating a perturbed inverse matrix as a convergent product
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 4, pp. 624-631 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_4_a10,
     author = {S. A. Shishkin},
     title = {The problem of calculating a perturbed inverse matrix as a convergent product},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {624--631},
     year = {1993},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/}
}
TY  - JOUR
AU  - S. A. Shishkin
TI  - The problem of calculating a perturbed inverse matrix as a convergent product
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 624
EP  - 631
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/
LA  - ru
ID  - ZVMMF_1993_33_4_a10
ER  - 
%0 Journal Article
%A S. A. Shishkin
%T The problem of calculating a perturbed inverse matrix as a convergent product
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 624-631
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/
%G ru
%F ZVMMF_1993_33_4_a10
S. A. Shishkin. The problem of calculating a perturbed inverse matrix as a convergent product. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 4, pp. 624-631. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/

[1] Shulz G., “Iterative Berechnung der resiproken Matrtx”, Z. angew. Math. und Mech., 67:1 (1933), 57–59 | DOI

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR | Zbl

[4] Herzberger J., “Explizite Shulz Verfahren höherer Ordnung zur Approximation der inversen Matrix”, Z. angew. Math. und Mech., 68:5 (1988), 494–496 | MR | Zbl

[5] Shishkin S. A., “O rasshirenii vozmozhnostei protsedur obrascheniya matrits”, Zh. vychisl. matem. i matem. fiz., 31:4 (1991), 492–504 | MR

[6] Shishkin S. A., “Ob odnom algoritme obrascheniya neosobennykh matrits s garantirovannoi tochnostyu”, Zh. vychisl. matem. i matem. fiz., 31:6 (1991), 783–789 | MR

[7] Bukhberger B., Emelyanenko G. A., “Metody obrascheniya trekhdiagonalnykh matrits”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 546–554 | Zbl

[8] Stickel E., “On a class of high order methods for inverting matrices”, Z. angew. Math. und Mech., 67:7 (1987), 334–336 | DOI | MR | Zbl