@article{ZVMMF_1993_33_4_a10,
author = {S. A. Shishkin},
title = {The problem of calculating a perturbed inverse matrix as a convergent product},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {624--631},
year = {1993},
volume = {33},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/}
}
TY - JOUR AU - S. A. Shishkin TI - The problem of calculating a perturbed inverse matrix as a convergent product JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 624 EP - 631 VL - 33 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/ LA - ru ID - ZVMMF_1993_33_4_a10 ER -
S. A. Shishkin. The problem of calculating a perturbed inverse matrix as a convergent product. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 4, pp. 624-631. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_4_a10/
[1] Shulz G., “Iterative Berechnung der resiproken Matrtx”, Z. angew. Math. und Mech., 67:1 (1933), 57–59 | DOI
[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl
[3] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR | Zbl
[4] Herzberger J., “Explizite Shulz Verfahren höherer Ordnung zur Approximation der inversen Matrix”, Z. angew. Math. und Mech., 68:5 (1988), 494–496 | MR | Zbl
[5] Shishkin S. A., “O rasshirenii vozmozhnostei protsedur obrascheniya matrits”, Zh. vychisl. matem. i matem. fiz., 31:4 (1991), 492–504 | MR
[6] Shishkin S. A., “Ob odnom algoritme obrascheniya neosobennykh matrits s garantirovannoi tochnostyu”, Zh. vychisl. matem. i matem. fiz., 31:6 (1991), 783–789 | MR
[7] Bukhberger B., Emelyanenko G. A., “Metody obrascheniya trekhdiagonalnykh matrits”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 546–554 | Zbl
[8] Stickel E., “On a class of high order methods for inverting matrices”, Z. angew. Math. und Mech., 67:7 (1987), 334–336 | DOI | MR | Zbl