@article{ZVMMF_1993_33_3_a3,
author = {B. Weber and V. G. Korneev},
title = {A preconditioner of a finite-element matrix for a fourth-order elliptic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {364--379},
year = {1993},
volume = {33},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a3/}
}
TY - JOUR AU - B. Weber AU - V. G. Korneev TI - A preconditioner of a finite-element matrix for a fourth-order elliptic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 364 EP - 379 VL - 33 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a3/ LA - ru ID - ZVMMF_1993_33_3_a3 ER -
%0 Journal Article %A B. Weber %A V. G. Korneev %T A preconditioner of a finite-element matrix for a fourth-order elliptic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1993 %P 364-379 %V 33 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a3/ %G ru %F ZVMMF_1993_33_3_a3
B. Weber; V. G. Korneev. A preconditioner of a finite-element matrix for a fourth-order elliptic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 3, pp. 364-379. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a3/
[1] Korneev V. G., “Ob iteratsionnom reshenii skhem metoda konechnykh elementov dlya ellipticheskikh uravnenii chetvertogo poryadka”, Chisl. metody mekhan. sploshnoi sredy, 9, no. 6, VTs SO AN SSSR, Novosibirsk, 1978, 85–104 | MR
[2] Korneev V. G., “Setochnye operatory, energeticheski ekvivalentnye porozhdaemym kusochno-ermitovymi rasprostraneniyami”, Zh. vychisl. matem. i matem. fiz., 19:2 (1979), 402–416 | MR | Zbl
[3] Langer U., “Ob iteratsionnom reshenii nekotorykh skhem metoda konechnykh elementov dlya ellipticheskikh uravnenii poryadka $2n$, $n\geq1$”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 881–891 | MR | Zbl
[4] Korneev V. G., Langer U., “Iteratsionnoe reshenie skhem metoda konechnykh elementov s nepolnymi elementami na regulyarnoi setke”, Metody vychislenii, 12, Izd-vo LGU, L., 1979, 116–133 | MR
[5] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo LGU, L., 1977 | MR
[6] Langer U., “Bystryi iteratsionnyi metod resheniya pervoi kraevoi zadachi dlya bigarmonicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 28:2 (1988), 209–223 | MR
[7] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[8] Ivanov S. A., Korneev V. G., Metod bystrogo diskretnogo preobrazovaniya Fure dlya $(2m+1)$-tochechnoi approksimatsii bigarmonicheskogo uravneniya, Dep. v VINITI, No 1006-78 DEP., 1979
[9] Ivanov S. A., Korneev V. G., “Metod bystrogo diskretnogo preobrazovaniya Fure pri reshenii ellipticheskikh uravnenii chetvertogo poryadka”, Vestn. LGU. Ser. matem., mekhan., astron., 1980, no. 3(13), 29–34 | MR | Zbl
[10] Balmann D., Bystrye metody chislennogo resheniya zadachi Dirikhle dlya bigarmonicheskogo operatora, Dis. ...kand. fiz.-matem. nauk, LGU, L., 1990
[11] Kaporin I. E., Nikolaev E. S., “Metod fiktivnykh neizvestnykh dlya resheniya raznostnykh ellipticheskikh kraevykh zadach v neregulyarnykh oblastyakh”, Differents. ur-niya, 16:7 (1980), 1211–1225 | MR | Zbl
[12] Kaporin I. E., Nikolaev E. S., “Metod fiktivnykh neizvestnykh — sopryazhennykh napravlenii dlya raznostnykh ellipticheskikh zadach s peremennymi koeffitsientami”, Differents. ur-niya, 18:7 (1982), 1202–1207 | MR | Zbl