The approximation of sets of guaranteed attainability of control systems with mixed constraints when there is interference
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 3, pp. 335-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_3_a1,
     author = {B. M. Mukhamediev},
     title = {The approximation of sets of guaranteed attainability of control systems with mixed constraints when there is interference},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {335--348},
     year = {1993},
     volume = {33},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a1/}
}
TY  - JOUR
AU  - B. M. Mukhamediev
TI  - The approximation of sets of guaranteed attainability of control systems with mixed constraints when there is interference
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 335
EP  - 348
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a1/
LA  - ru
ID  - ZVMMF_1993_33_3_a1
ER  - 
%0 Journal Article
%A B. M. Mukhamediev
%T The approximation of sets of guaranteed attainability of control systems with mixed constraints when there is interference
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 335-348
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a1/
%G ru
%F ZVMMF_1993_33_3_a1
B. M. Mukhamediev. The approximation of sets of guaranteed attainability of control systems with mixed constraints when there is interference. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 3, pp. 335-348. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_3_a1/

[1] Lotov A. V., “Chislennyi metod postroeniya mnozhestva dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 67–78 | MR | Zbl

[2] Nikolskii M. S., “Ob approksimatsii mnozhestva dostizhimosti upravlyaemogo protsessa”, Matem. zametki, 41 (1987), 71–76 | MR

[3] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR

[4] Panasyuk I. P., “Uravneniya oblastei dostizhimosti i ikh primeneniya v zadachakh optimalnogo upravleniya”, Avtomatika i telemekhan., 1982, no. 5, 67–78 | MR | Zbl

[5] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sb., 112:3 (1980), 307–330 | MR | Zbl

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[7] Pshenichnyi B. N., Sagaidak M. I., “O differentsialnykh igrakh s fiksirovannym vremenem”, Kibernetika, 1970, no. 2, 54–63 | MR

[8] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo LGU, L., 1977 | MR | Zbl

[9] Ivanilov Yu. P., Mukhamediev B. M., “Lineinye mnogoshagovye igry s protivopolozhnymi interesami”, Izv. AN SSSR. Tekhn. kibernetika, 1977, no. 4, 49–55 | MR | Zbl

[10] Mukhamediev B. M., “Postroenie mnozhestva dostizhimosti dlya lineinoi dinamicheskoi zadachi pri nalichii pomekh”, Zh. vychisl. matem. i matem. fiz., 17:2 (1977), 508–512 | MR | Zbl

[11] Mukhamediev B. M., “Chislennyi metod dlya mnogoshagovoi zadachi prinyatiya reshenii v usloviyakh neopredelennosti”, Zh. vychisl. matem. i matem. fiz., 25:6 (1985), 803–814 | MR | Zbl

[12] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, Nauka, M., 1966

[13] Castaing C., Valadier M., Convex analysis and measurable multifunctions, Springer, Berlin, 1977 | MR | Zbl

[14] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, v. 1, Izd-vo MGU, M., 1979

[15] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR