@article{ZVMMF_1993_33_1_a4,
author = {A. M. Matsokin and S. V. Nepomnyaschikh},
title = {The fictitious-domain method and explicit continuation operators},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {52--68},
year = {1993},
volume = {33},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a4/}
}
TY - JOUR AU - A. M. Matsokin AU - S. V. Nepomnyaschikh TI - The fictitious-domain method and explicit continuation operators JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 52 EP - 68 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a4/ LA - ru ID - ZVMMF_1993_33_1_a4 ER -
A. M. Matsokin; S. V. Nepomnyaschikh. The fictitious-domain method and explicit continuation operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 1, pp. 52-68. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a4/
[1] Astrakhantsev G. P., “Metod fiktivnykh oblastei dlya ellipticheskogo uravneniya vtorogo poryadka s estestvennymi granichnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 18:1 (1978), 118–125 | MR | Zbl
[2] Marchuk G. I., Kuznetsov Yu. A., “Nekotorye voprosy iteratsionnykh metodov”, Vychisl. metody lineinoi algebry, VTs SO AN SSSR, Novosibirsk, 1972, 4–20
[3] Matsokin A. M., “Metod fiktivnykh komponent i modifitsirovannyi raznostnyi analog metoda Shvartsa”, Vychisl. metody lineinoi algebry, VTs SO AN SSSR, Novosibirsk, 1980, 66–77 | MR
[4] Kaporin I. E., Nikolaev E. S., “Metod fiktivnykh neizvestnykh dlya resheniya raznostnykh ellipticheskikh kraevykh zadach v neregulyarnykh oblastyakh”, Differents. ur-niya, 16:7 (1980), 1211–1225 | MR | Zbl
[5] Marchuk G. I., Kuznetsov Yu. A., Matsokin A. M., “Fictitious domain and domain decomposition methods”, Sovet. J. Numer. Analys. and Math. Modelling, 1:1 (1986), 3–35 | DOI | MR | Zbl
[6] Matsokin A. M., “Metody fiktivnykh komponent i alternirovaniya po podoblastyam”, Vychisl. algoritmy v zadachakh matem. fiz., VTs SO AN SSSR, Novosibirsk, 1985, 76–98 | MR
[7] Matsokin A. M., Metody fiktivnykh komponent i alternirovaniya po podprostranstvam, Dis. ...dokt. fiz.-matem. nauk, VTs SO AN SSSR, Novosibirsk, 1988, 272 pp.
[8] Nepomnyaschikh S. V., “Metod razlozheniya na podprostranstva dlya resheniya ellipticheskikh kraevykh zadach v oblastyakh slozhnoi formy”, Chisl. metody i matem. modelirovanie, VTs SO AN SSSR, Novosibirsk, 1990, 121–149
[9] Nepomnyaschikh S. V., O setochnykh teoremakh o sledakh, normirovkakh sledov i ikh obraschenii, Preprint No 930, VTs SO AN SSSR, Novosibirsk, 1991, 38 pp.
[10] Marchuk G. I., Kuznetsov Yu. A., Iteratsionnye metody i kvadratichnye funktsionaly, Nauka, Novosibirsk, 1972 | Zbl
[11] Nepomnyaschikh S. V., Dekompozitsiya oblasti i metod Shvartsa v podprostranstve dlya priblizhennogo resheniya ellipticheskikh kraevykh zadach, Dis. ...kand. fiz.-matem. nauk, VTs SO AN SSSR, Novosibirsk, 1986, 162 pp.
[12] Matsokin A. M., “Prodolzhenie setochnykh funktsii s sokhraneniem normy”, Variatsionnye metody v zadachakh chisl. analiza, VTs SO AN SSSR, Novosibirsk, 1986, 111–132 | Zbl
[13] Domain decomposition methods for partial differential equations, SIAM, Philadelphia, 1990
[14] Yakovlev G. N., “O sledakh funktsii iz prostranstva $W_p^l$ na kusochno-gladkikh poverkhnostyakh”, Matem. sb., 74(116):4 (1976), 526–543
[15] Matsokin A. M., Nepomnyaschikh S. V., “Primenenie okaimleniya pri reshenii sistem setochnykh uravnenii”, Vychisl. algoritmy v zadachakh matem. fiz., VTs SO AN SSSR, Novosibirsk, 1983, 99–109