Approximate properties of two-dimensional splines of the third and fourth degree
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 1, pp. 12-21
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1993_33_1_a1,
author = {N. L. Zmatrakov},
title = {Approximate properties of two-dimensional splines of the third and fourth degree},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {12--21},
year = {1993},
volume = {33},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/}
}
TY - JOUR AU - N. L. Zmatrakov TI - Approximate properties of two-dimensional splines of the third and fourth degree JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1993 SP - 12 EP - 21 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/ LA - ru ID - ZVMMF_1993_33_1_a1 ER -
N. L. Zmatrakov. Approximate properties of two-dimensional splines of the third and fourth degree. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 1, pp. 12-21. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/
[1] Chui C. K., Wang R. H., “Bivariate cubic $B$-splines relative to cross-cut triangulations”, Chinese Ann. Math., 4 (1983), 509–523 | MR | Zbl
[2] Shumilov B. M., “O lokalnoi interpolyatsii na ravnomernoi treugolnoi setke splainami chetvertoi stepeni gladkosti $C^1$”, Izv. vuzov. Matematika, 1968, no. 5, 71–81
[3] de Boor C., Höllig K., “Approximation order from bivariate $C^1$-cubic: a counterexample”, Proc. Amer. Math. Soc., 87 (1983), 649–655 | DOI | MR | Zbl
[4] de Boor C., Höllig K., “Approximation power of smooth bivariate $pp$ functions”, Math. Z., 197 (1988), 343–363 | DOI | MR | Zbl