Approximate properties of two-dimensional splines of the third and fourth degree
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 1, pp. 12-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_1_a1,
     author = {N. L. Zmatrakov},
     title = {Approximate properties of two-dimensional splines of the third and fourth degree},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {12--21},
     year = {1993},
     volume = {33},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/}
}
TY  - JOUR
AU  - N. L. Zmatrakov
TI  - Approximate properties of two-dimensional splines of the third and fourth degree
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 12
EP  - 21
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/
LA  - ru
ID  - ZVMMF_1993_33_1_a1
ER  - 
%0 Journal Article
%A N. L. Zmatrakov
%T Approximate properties of two-dimensional splines of the third and fourth degree
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 12-21
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/
%G ru
%F ZVMMF_1993_33_1_a1
N. L. Zmatrakov. Approximate properties of two-dimensional splines of the third and fourth degree. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 1, pp. 12-21. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_1_a1/

[1] Chui C. K., Wang R. H., “Bivariate cubic $B$-splines relative to cross-cut triangulations”, Chinese Ann. Math., 4 (1983), 509–523 | MR | Zbl

[2] Shumilov B. M., “O lokalnoi interpolyatsii na ravnomernoi treugolnoi setke splainami chetvertoi stepeni gladkosti $C^1$”, Izv. vuzov. Matematika, 1968, no. 5, 71–81

[3] de Boor C., Höllig K., “Approximation order from bivariate $C^1$-cubic: a counterexample”, Proc. Amer. Math. Soc., 87 (1983), 649–655 | DOI | MR | Zbl

[4] de Boor C., Höllig K., “Approximation power of smooth bivariate $pp$ functions”, Math. Z., 197 (1988), 343–363 | DOI | MR | Zbl