An adaptive algorithm for establishing functions in the class $Q_{r,\gamma,p}(\Omega)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 11, pp. 1638-1650 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1993_33_11_a2,
     author = {I. V. Boykov},
     title = {An adaptive algorithm for establishing functions in the class $Q_{r,\gamma,p}(\Omega)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1638--1650},
     year = {1993},
     volume = {33},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_11_a2/}
}
TY  - JOUR
AU  - I. V. Boykov
TI  - An adaptive algorithm for establishing functions in the class $Q_{r,\gamma,p}(\Omega)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1993
SP  - 1638
EP  - 1650
VL  - 33
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_11_a2/
LA  - ru
ID  - ZVMMF_1993_33_11_a2
ER  - 
%0 Journal Article
%A I. V. Boykov
%T An adaptive algorithm for establishing functions in the class $Q_{r,\gamma,p}(\Omega)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1993
%P 1638-1650
%V 33
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_11_a2/
%G ru
%F ZVMMF_1993_33_11_a2
I. V. Boykov. An adaptive algorithm for establishing functions in the class $Q_{r,\gamma,p}(\Omega)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 33 (1993) no. 11, pp. 1638-1650. http://geodesic.mathdoc.fr/item/ZVMMF_1993_33_11_a2/

[1] Sukharev A. G., Minimaksnye algoritmy v zadachakh chislennogo analiza, Nauka, M., 1989 | MR | Zbl

[2] Boor K., Rice J., “An adaptive algoritm for multivariate approximation giving optimal convergence rates”, J. Approximat. Theory, 25 (1979), 337–359 | DOI | MR | Zbl

[3] K. I. Babenko (red.), Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki, Nauka, M., 1979 | MR

[4] Babenko K. I., “O nekotorykh zadachakh teorii priblizhenii i chislennogo analiza”, Uspekhi matem. nauk, 40:1 (1985), 3–28 | MR

[5] Boikov I. V., “Optimalnye po tochnosti algoritmy vychisleniya integralov”, Optimalnye metody vychisl. i ikh primenenie, 8, Penzenskii politekhn. in-t, Penza, 1987, 4–22 | MR | Zbl

[6] Boikov I. V., Poperechniki na klassakh funktsii s neogranichennymi proizvodnymi, Dep. v VINITI 05.12.90, No 6118-V90, Penzenskii politekhn. in-t, Penza, 29 pp.

[7] Boikov I. V., “Poperechniki i $\varepsilon$-entropiya na klassakh funktsii s neogranichennymi proizvodnymi”, Optimalnye metody vychisl. i ikh primenenie k obrabotke informatsii, 10, Penzenskii politekhn. in-t, Penza, 1991, 4–21

[8] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[9] Birman M. Sh., Solomyak M. Z., “Kusochno-polinomialnye priblizheniya funktsii klassov $W_p^\alpha$”, Matem. sb., 73:3 (1967), 331–355 | MR | Zbl

[10] Boikov I. V., “Optimalnye kubaturnye formuly vychisleniya mnogomernykh integralov na klasse $\mathcal{Q}_{r,\gamma}(\Omega, 1)$”, Zh. vychisl. matem. i matem. fiz., 30:8 (1990), 1123–1132 | MR