@article{ZVMMF_1992_32_9_a8,
author = {O. A. Nehamkina and M. Kh. Strelets},
title = {Numerical simulation of detonation waves using an effective {TVD-scheme}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1447--1463},
year = {1992},
volume = {32},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a8/}
}
TY - JOUR AU - O. A. Nehamkina AU - M. Kh. Strelets TI - Numerical simulation of detonation waves using an effective TVD-scheme JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1447 EP - 1463 VL - 32 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a8/ LA - ru ID - ZVMMF_1992_32_9_a8 ER -
%0 Journal Article %A O. A. Nehamkina %A M. Kh. Strelets %T Numerical simulation of detonation waves using an effective TVD-scheme %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 1447-1463 %V 32 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a8/ %G ru %F ZVMMF_1992_32_9_a8
O. A. Nehamkina; M. Kh. Strelets. Numerical simulation of detonation waves using an effective TVD-scheme. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1447-1463. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a8/
[1] Harten A., Lax P. D., van Leer B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25 (1983), 35–61 | DOI | MR | Zbl
[2] Roe P. L., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 8 (1986), 337–369 | DOI | MR
[3] Yee H. C., Upwind and symmetric shock-capturing schemes, NASA TM No 89464, 1987
[4] Oran E. S., Boris J. P., Numerical simulation of reactive flow, Elsevier, N. Y. etc., 1987 | Zbl
[5] Harten A., “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Analys., 21 (1984), 1–23 | DOI | MR | Zbl
[6] Yee H. C., “Construction of explicit and implicit symmetric TVD schemes and their applications”, J. Comput. Phys., 68 (1987), 151–179 | DOI | MR | Zbl
[7] Grossman B., Cinnella P., “The computation of non-equilibrium, chemically-reacting flow”, Computers and Structures, 30:1/2 (1988), 79–93 | DOI | MR | Zbl
[8] Chuen J. S., Liou M.-S., van Leer B., “A detailed analysis of inviscid flux splitting algorithms for real gases with equilibrium or finite-rate chemistry”, Numer. Meth. Fluid Dynamics, 11-th Internat. Conf., Berlin etc., 1988, 543–547
[9] Vinokur M., Liu Y., Equilibrium gas flow computations. II: An analysis of numerical formulation of conservation laws, AIAA Paper 88-0127
[10] Roe P. L., “Approximate Riemann solvers, parameter vectors and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[11] Chacravarthy S. R., The versatility and reliability of Euler solvers based on high-accuracy TVD formulations, AIAA Paper 86-0243
[12] Nekhamkina O. A., Strelets M. Kh., “Modelirovanie lokalnogo impulsnogo energovklada v zamknutom ob'eme gaza”, Matem. modelirovanie, 1991, no. 2, 3–19
[13] Lapin Yu. V., Strelets M. X., Vnutrennie techeniya gazovykh smesei, Nauka, M., 1989
[14] Gardiner U. ml., Dikson-Lyuis G., Tselner R. i dr., Khimiya goreniya, Mir, M., 1988
[15] Chiang T., Hoffman K., Determination of computation time step for chemically reacting flows, AIAA Paper 89-1855
[16] Pratt D. T., Humphrey J. W., Glenn D. E., Morphology of a standing oblique detonation wave, AIAA Paper 87-2002
[17] Nettleton M. A., Gaseous detonations: their nature, effects and control, L.–N. Y., 1981
[18] Yi-yun Wang, Fujiwara T., Aoki T. et al., Three-dimensional standing oblique detonation wave in a hypersonic flow, AIAA Paper 88-0478
[19] Glenn D. E., Pratt D. T., Numerical modeling of standing oblique detonation waves, AIAA Paper 88-0440
[20] Wada Y., Kubota H., Ishiguro T., Ogawa S., “A fully implicit high-resolution scheme for chemically reacting compressible flow”, Notes Numer. Fluid Mech., 24 (1989), 648–659 | MR | Zbl