Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1387-1399

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZVMMF_1992_32_9_a3,
     author = {I. L. Osipov},
     title = {Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1387--1399},
     publisher = {mathdoc},
     volume = {32},
     number = {9},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/}
}
TY  - JOUR
AU  - I. L. Osipov
TI  - Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1387
EP  - 1399
VL  - 32
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/
LA  - ru
ID  - ZVMMF_1992_32_9_a3
ER  - 
%0 Journal Article
%A I. L. Osipov
%T Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1387-1399
%V 32
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/
%G ru
%F ZVMMF_1992_32_9_a3
I. L. Osipov. Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1387-1399. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/