Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1387-1399
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZVMMF_1992_32_9_a3,
author = {I. L. Osipov},
title = {Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1387--1399},
publisher = {mathdoc},
volume = {32},
number = {9},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/}
}
TY - JOUR AU - I. L. Osipov TI - Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1387 EP - 1399 VL - 32 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/ LA - ru ID - ZVMMF_1992_32_9_a3 ER -
%0 Journal Article %A I. L. Osipov %T Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 1387-1399 %V 32 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/ %G ru %F ZVMMF_1992_32_9_a3
I. L. Osipov. Reconstruction of a surface that has a continuous curvature and is defined on a flat point manifold. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1387-1399. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a3/