Error bounds in Arnoldi's method: The case of a normal matrix
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1347-1360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_9_a0,
     author = {L. A. Knizhnerman},
     title = {Error bounds in {Arnoldi's} method: {The} case of a normal matrix},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1347--1360},
     year = {1992},
     volume = {32},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a0/}
}
TY  - JOUR
AU  - L. A. Knizhnerman
TI  - Error bounds in Arnoldi's method: The case of a normal matrix
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1347
EP  - 1360
VL  - 32
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a0/
LA  - ru
ID  - ZVMMF_1992_32_9_a0
ER  - 
%0 Journal Article
%A L. A. Knizhnerman
%T Error bounds in Arnoldi's method: The case of a normal matrix
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1347-1360
%V 32
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a0/
%G ru
%F ZVMMF_1992_32_9_a0
L. A. Knizhnerman. Error bounds in Arnoldi's method: The case of a normal matrix. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 9, pp. 1347-1360. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_9_a0/

[1] Arnoldi W. E., “The principle of minimized iterations in the solution of the matrix eigenvalue problem”, Quart. Appl. Math., 9:1 (1951), 17–29 | MR | Zbl

[2] Saad Y., “Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices”, Linear Algebra and Applic., 34 (1980), 269–295 | DOI | MR | Zbl

[3] Saad Y., “Krylov subspace method for solving large unsymmetric linear systems”, Math. Comput., 37:155 (1981), 105–126 | DOI | MR | Zbl

[4] Elman H. C., Saad Y., Saylor P. E., “A hybrid Chebyshev-Krylov subspace algorithm for solving nonsymmetric systems of linear equations”, SIAM J. Sci. Statist. Comput., 7:3 (1986), 840–855 | DOI | MR | Zbl

[5] Gear C. W., Saad Y., “Iterative solution of linear equations in ODE codes”, SIAM J. Sci. Statist. Comput., 4:4 (1983), 583–601 | DOI | MR | Zbl

[6] Knizhnerman L. A., “Vychislenie funktsii ot nesimmetrichnykh matrits s pomoschyu metoda Arnoldi”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 5–16 | MR

[7] Householder A. S., The theory of matrices in numerical analysis, Blaisdel Publs Co., N. Y., 1964 | MR | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[9] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[10] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Nauka, M., 1970

[11] Kaniel S., “Estimates for some computational techniques in linear algebra”, Math. Comput., 20 (1966), 369–378 | DOI | MR | Zbl

[12] Saad Y., “On the rates of convergence of the Lanczos and the block-Lanczos methods”, SIAM J. Numer. Analys., 17:5 (1980), 687–706 | DOI | MR | Zbl

[13] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl

[14] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[15] Suetin P. K., Ryady po mnogochlenam Fabera, Nauka, M., 1984 | MR | Zbl

[16] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[17] Druskin V. L., Knizhnerman L. A., “Dva polinomialnykh metoda vychisleniya funktsii ot simmetrichnykh matrits”, Zh. vychisl. matem. i matem. fiz., 29:12 (1989), 1763–1775 | MR