@article{ZVMMF_1992_32_8_a9,
author = {I. D. Turetaev},
title = {Investigation of finite difference schemes for the {Korteweg{\textendash}de} {Vries} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1273--1290},
year = {1992},
volume = {32},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a9/}
}
TY - JOUR AU - I. D. Turetaev TI - Investigation of finite difference schemes for the Korteweg–de Vries equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1273 EP - 1290 VL - 32 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a9/ LA - ru ID - ZVMMF_1992_32_8_a9 ER -
I. D. Turetaev. Investigation of finite difference schemes for the Korteweg–de Vries equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 8, pp. 1273-1290. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a9/
[1] Kuo Pen Yu, Wu Hua-Mo, “Numerical solution of K.D.V. equation”, J. Math. Analys. and Applic., 82:2 (1981), 334–345 | DOI | MR | Zbl
[2] Berezin Yu. A., Modelirovanie nelineinykh volnovykh protsessov, Nauka, Novosibirsk, 1982 | MR
[3] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[4] Cacuci D. G., Karakashian O. A., “Benchmarking the propagator method for nonlinear systems: A Burgers-Korteweg-de Vries equation”, J. Comput. Phys., 89:1 (1990), 63–79 | DOI | MR | Zbl
[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[6] Turetaev I. D., “Issledovanie proektsionno-raznostnykh skhem dlya uravnenii Bona-Smita i Byurgersa-Kortevega-de Vriza”, Zh. vychisl. matem. i matem. fiz., 31:2 (1991), 272–285 | MR
[7] Turetaev I. D., Otsenki pogreshnosti nekotorykh raznostnykh metodov resheniya parabolicheskikh uravnenii, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1983
[8] Vishik M. I., “Reshenie sistemy kvazilineinykh uravnenii, imeyuschikh divergentnuyu formu, pri periodicheskikh granichnykh usloviyakh”, Dokl. AN SSSR, 137:3 (1961), 502–503 | MR
[9] Turetaev I. D., “Lineinaya konechno-raznostnaya skhema dlya uravneniya Kortevega-de Friza”, Izv. AN KazSSR. Ser. fiz.-matem., 1991, no. 1, 68–69 | MR