A regularized gradient-projection method in a parabolic optimal control problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 8, pp. 1197-1212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_8_a4,
     author = {O. Obradovich and M. M. Potapov and A. V. Razgulin},
     title = {A regularized gradient-projection method in a parabolic optimal control problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1197--1212},
     year = {1992},
     volume = {32},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a4/}
}
TY  - JOUR
AU  - O. Obradovich
AU  - M. M. Potapov
AU  - A. V. Razgulin
TI  - A regularized gradient-projection method in a parabolic optimal control problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1197
EP  - 1212
VL  - 32
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a4/
LA  - ru
ID  - ZVMMF_1992_32_8_a4
ER  - 
%0 Journal Article
%A O. Obradovich
%A M. M. Potapov
%A A. V. Razgulin
%T A regularized gradient-projection method in a parabolic optimal control problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1197-1212
%V 32
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a4/
%G ru
%F ZVMMF_1992_32_8_a4
O. Obradovich; M. M. Potapov; A. V. Razgulin. A regularized gradient-projection method in a parabolic optimal control problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 8, pp. 1197-1212. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a4/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[3] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[4] Ivanovich L. D., “Raznostnaya approksimatsiya i regulyarizatsiya zadachi ob optimalnom nagreve sterzhnya”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1982, no. 3, 10–15 | MR | Zbl

[5] Labuzov S. G., Potapov M. M., “Otsenka skorosti skhodimosti metoda pryamykh v zadache ob optimalnom nagreve sterzhnya”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1985, no. 4, 23–27 | MR | Zbl

[6] Vasilev F. P., “Iterativnaya regulyarizatsiya raznostnykh approksimatsii odnoi zadachi optimalnogo upravleniya”, Vestn. Kievskogo un-ta. Ser. Modelirovanie i optimizatsiya slozhnykh sistem, 1982, no. 1, 40–45 | MR

[7] Obradovich O., Potapov M. M., “O regulyarizovannom metode iterativnoi splain-aproksimatsii optimalnogo upravleniya”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1990, no. 4, 29–33 | MR | Zbl

[8] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, v. 2, Springer, N. Y., 1972

[9] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[10] Zlotnik A. A., “Otsenka skorosti skhodimosti v $\mathrm{V}_2(\mathrm{Q_T})$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 27–35 | MR | Zbl

[11] Lazarov L. D., Makarov V. L., Samarskii A. A., “Primenenie tochnykh raznostnykh skhem dlya postroeniya i issledovaniya raznostnykh skhem na obobschennykh resheniyakh”, Matem. sb., 117 (159):4 (1982), 469–480 | MR | Zbl

[12] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i fiz., 20:2 (1980), 422–432 | MR | Zbl

[13] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl