A family of pseudospectral algorithms for integrating Navier–Stokes equations in a cylindrical coordinate system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 8, pp. 1291-1309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_8_a10,
     author = {V. G. Priymak},
     title = {A family of pseudospectral algorithms for integrating {Navier{\textendash}Stokes} equations in a cylindrical coordinate system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1291--1309},
     year = {1992},
     volume = {32},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a10/}
}
TY  - JOUR
AU  - V. G. Priymak
TI  - A family of pseudospectral algorithms for integrating Navier–Stokes equations in a cylindrical coordinate system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1291
EP  - 1309
VL  - 32
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a10/
LA  - ru
ID  - ZVMMF_1992_32_8_a10
ER  - 
%0 Journal Article
%A V. G. Priymak
%T A family of pseudospectral algorithms for integrating Navier–Stokes equations in a cylindrical coordinate system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1291-1309
%V 32
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a10/
%G ru
%F ZVMMF_1992_32_8_a10
V. G. Priymak. A family of pseudospectral algorithms for integrating Navier–Stokes equations in a cylindrical coordinate system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 8, pp. 1291-1309. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_8_a10/

[1] Orszag S. A., Kells L. C., “Transition to turbulence in plane Poiseuille and plane Couette flow”, J. Fluid Mech., 96 (1980), 159–205 | DOI | MR | Zbl

[2] Rozhdestvenskii B. L., Simakin I. N., “Modelirovanie turbulentnykh techenii v ploskom kanale”, Zh. vychisl. matem. i matem. fiz., 25:1 (1985), 96–121 | MR

[3] Kleiser L., Schumann U., “Spectral simulations of the laminar-turbulent transition process in plane Poiseuille flow”, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984, 141–163 | MR

[4] Kim J., Moin P., Moser R. D., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[5] Ponomarev S. G., Priimak V. G., Rozhdestvenskii B. L., “Statisticheski-statsionarnye resheniya uravnenii Nave-Stoksa v koltsevom kanale. Gidrodinamicheskie kharakteristiki i prostranstvenno-vremennáya struktura”, Zh. vychisl. matem. i matem fiz., 28:9 (1988), 1354–1366 | MR

[6] Spalart P. R., “Direct simulation of a turbulent boundary layer up to $\mathrm{R}_\theta=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI | Zbl

[7] Laurien E., Kleiser L., “Numerical simulation of boundary-layer transition and transition control”, J. Fluid Mech., 199 (1989), 403–440 | DOI | Zbl

[8] Patera A. T., Orszag S. A., “Finite-amplitude stability of axisymmetric pipe flow”, J. Fluid Mech., 112 (1981), 467–474 | DOI | MR | Zbl

[9] Orszag S. A., Patera A. T., “Secondary instability of wall-bounded shear flows”, J. Fluid Mech., 128 (1983), 347–385 | DOI | Zbl

[10] Soberg L., Brosa U., “Onset of turbulence in a pipe”, Z. Naturforsch. a, 43 (1988), 697–726

[11] Garg V. K., Rouleau W. T., “Linear spatial stability of pipe Poiseuille flow”, J. Fluid Mech., 54 (1972), 113–127 | DOI | Zbl

[12] Salwen H., Grosch C. E., “The stability of Poiseuille flow in a pipe of circular cross-section”, J. Fluid Mech., 54 (1972), 93–112 | DOI | Zbl

[13] Nikitin N. V., “O zhestkom vozbuzhdenii avtokolebanii v techenii Gagena-Puazeilya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1984, no. 5, 181–183 | MR | Zbl

[14] Priimak V. G., Rozhdestvenskii B. L., “Vtorichnye techeniya vyazkoi neszhimaemoi zhidkosti v krugloi trube i ikh statisticheskie svoistva”, Dokl. AN SSSR, 297:6 (1987), 1326–1330

[15] Priymak V. G., “Navier-Stokes simulation of turbulent viscous fluid flows in pipes: algorithms, turbulence statistics, space-time structure, attractors”, Proc. II Japan-Soviet Union Joint Symp. on Comput. Fluid Dynamics (Tsukuba, Aug. 27–31, 1990), Tsukuba, 1990, 124–131

[16] Priimak V. G., “Rezultaty i vozmozhnosti pryamogo chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti v krugloi trube”, Dokl. AN SSSR, 316:1 (1991), 71–76 | MR

[17] Leonard A., Wray A., “A new numerical method for the simulation of three-dimensional flow in a pipe”, Numer. Methods in Fluid Dynamics, Proc. 8th Internat. Conf., Lect. Notes in Phys., 170, Springer, Berlin, 1982, 335–342

[18] Tuckerman L. S., “Divergence-free velocity fields in nonperiodic geometries”, J. Comput. Phys., 80 (1989), 403–441 | DOI | MR | Zbl

[19] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[20] Orszag S. A., “Numerical simulation of incompressible flows within simple boundaries. I: Galerkin (spectral) representations”, Studies Appl. Math., 50:4 (1971), 293–327 | MR | Zbl

[21] Priimak V. G., Shevchenko V. I., Yulaev Yu. V., Primenenie mnogoprotsessornogo vychislitelnogo kompleksa ES1037-ES2706 dlya chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti, Preprint No 1657, IKI AN SSSR, M., 1990

[22] Arakawa A., “Computational design for long-term numerical integration of the equation of fluid motion: two-dimensional incompressible flow, 1”, J. Comput. Phys., 1 (1966), 119–143 | DOI | Zbl

[23] Rozhdestvensky B. L., Priymak V. G., “Numerical simulation of two-dimensional turbulence in a plane channel”, Comput. and Fluids, 10 (1982), 117–126 | DOI | Zbl

[24] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave-Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, IPMatem. AN SSSR, M., 1987 | MR

[25] Rozhdestvenskii B. L., “O primenimosti raznostnykh metodov resheniya uravnenii Nave-Stoksa pri bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 211:2 (1973), 308–311