@article{ZVMMF_1992_32_7_a9,
author = {G. Z. Tsertsvadze},
title = {The convergence of a completely conservative difference scheme for gas-dynamic equations in {Euler} variables},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1080--1092},
year = {1992},
volume = {32},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a9/}
}
TY - JOUR AU - G. Z. Tsertsvadze TI - The convergence of a completely conservative difference scheme for gas-dynamic equations in Euler variables JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1080 EP - 1092 VL - 32 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a9/ LA - ru ID - ZVMMF_1992_32_7_a9 ER -
%0 Journal Article %A G. Z. Tsertsvadze %T The convergence of a completely conservative difference scheme for gas-dynamic equations in Euler variables %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 1080-1092 %V 32 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a9/ %G ru %F ZVMMF_1992_32_7_a9
G. Z. Tsertsvadze. The convergence of a completely conservative difference scheme for gas-dynamic equations in Euler variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 7, pp. 1080-1092. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a9/
[1] Abrashin V. P., Matus P. P., “Raznostnye skhemy dlya nelineinykh giperbolicheskikh uravnenii s kusochno-gladkimi resheniyami”, Differents. ur-niya, 15:7 (1979), 1225–1238 | MR | Zbl
[2] Abrashin V. P., Matus P. P., “O tochnosti raznostnykh skhem dlya odnomernykh zadach gazovoi dinamiki”, Differents. ur-niya, 17:7 (1981), 1155–1170 | MR | Zbl
[3] Matus P. P., Schavel A. P., “O skhodimosti raznostnykh skhem dlya odnomernykh zadach gazovoi dinamiki s uchetom teploprovodnosti”, Differents. ur-niya, 19:7 (1983), 1251–1261 | MR | Zbl
[4] Meladze G. V., Potskhishvili D. V., “O skhodimosti raznostnykh skhem gazovoi dinamiki v kvazilagranzhevykh peremennykh”, Zh. vychisl. matem. i matem. fiz., 26:4 (1986), 563–573 | MR | Zbl
[5] Volosevich P. P., Darin N. A., Levanov E. I. i dr., O skhodimosti polnostyu konservativnykh raznostnykh skhem dlya uravnenii gazovoi dinamiki s.uchetom teploprovodnosti i stoka massy v kvazilagranzhevykh peremennykh, Preprint No 116, IPMatem. AN SSSR, M., 1986
[6] Meladze G. V., Potskhishvili D. V., “O skhodimosti konservativnoi differentsialno-raznostnoi skhemy gazovoi dinamiki v eilerovykh koordinatakh”, Zh. vychisl. matem. i matem. fiz., 25:6 (1985), 850–859 | MR
[7] Meladze G. V., Potskhishvili D. V., O skhodimosti polnostyu konservativnykh dvukhsloinykh raznostnykh skhem gazovoi dinamiki v peremennykh Eilera, Preprint IVMatem. im. N. I. Muskhelishvili, Izd-vo AN Gruzii, Tbilisi, 1990
[8] Kucher N. A., “Obosnovanie skhem rasschepleniya dlya mnogomernykh uravnenii gazovoi dinamiki”, Dokl. AN SSSR, 315:1 (1990), 23–28 | Zbl
[9] Kuo P.-Y., Sanz-Serna J. M., “Convergence of method for the numerical solution of the Korteweg-De Vries equation”, IMA J. Numer. Anal., 1 (1981), 215–221 | DOI | MR | Zbl
[10] Kuo P.-Y., Wu H.-M., “Numerical solution of K.D.V. equation”, J. Math. Analys. and Applic., 82:2 (1981), 334–345 | DOI | MR | Zbl
[11] Koldoba A. V., Poveschenko Yu. A., Popov Yu. P., “Dvukhsloinye polnostyu konservativnye raznostnye skhemy dlya uravnenii gazovoi dinamiki v peremennykh Eilera”, Zh. vychisl. matem. i matem. fiz., 27:5 (1987), 779–784 | MR | Zbl
[12] Poveschenko Yu. A., Popov S. B., Syrovatskaya T. N., Issledovanie ustoichivosti dvukhsloinykh raznostnykh skhem gazovoi dinamiki v peremennykh Eilera, Preprint No 119, IPMatem. AN SSSR, M., 1988
[13] Volosevich P. P., Darin N. A., Levanov E. I., Skhirtladze N. M., Zadacha o porshne v gaze s istochnikom i stokami (avtomodelnde resheniya), Izd-vo Tbilissk. un-ta, Tbilisi, 1986 | MR
[14] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR
[15] Tsertsvadze G. Z., “O skhodimosti raznostnykh skhem dlya uravneniya Kuramoto-Tsuzuki i dlya sistem tipa reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 31:5 (1991), 698–707 | MR