@article{ZVMMF_1992_32_7_a7,
author = {O. E. Grigor and M. B. Tverskoy},
title = {An investigation of capillary-gravity waves of finite amplitude on the surface of a floating liquid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1057--1070},
year = {1992},
volume = {32},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a7/}
}
TY - JOUR AU - O. E. Grigor AU - M. B. Tverskoy TI - An investigation of capillary-gravity waves of finite amplitude on the surface of a floating liquid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1057 EP - 1070 VL - 32 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a7/ LA - ru ID - ZVMMF_1992_32_7_a7 ER -
%0 Journal Article %A O. E. Grigor %A M. B. Tverskoy %T An investigation of capillary-gravity waves of finite amplitude on the surface of a floating liquid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 1057-1070 %V 32 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a7/ %G ru %F ZVMMF_1992_32_7_a7
O. E. Grigor; M. B. Tverskoy. An investigation of capillary-gravity waves of finite amplitude on the surface of a floating liquid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 7, pp. 1057-1070. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a7/
[1] Sretenskii L. N., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977
[2] Sekerzh-Zenkovich Ya. I., “Ob ustanovivshikhsya kapillyarno-gravitatsionnykh vynuzhdennykh volnakh konechnoi amplitudy na poverkhnosti zhidkosti konechnoi glubiny”, Mekhan. sploshnoi sredy i rodstvennye probl. analiza, Nauka, M., 1972, 445–458
[3] Wilton J. R., “On ripples”, Philos. Mag., 29 (1915), 688–700 | Zbl
[4] Pierson W., File P., “Some nonlinear properties of long-grested periodic waves with lengths near 2.44 centimeters”, J. Geophys. Res., 66:1 (1961), 163–179 | DOI | MR
[5] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR
[6] Nayfeh Ali Hasan, “Finite amplitude surface waves in a liquid layer”, J. Fluid Mech., 40:4 (1970), 671–684 | DOI | Zbl
[7] Nayfeh Ali Hasan, “Third harmonic resonance in the interaction of capillary and gravity waves”, J. Fluid Mech., 48:2 (1971), 385–395 | DOI | MR | Zbl
[8] McColdrick L. F., “An experiment on second-order capillary gravity resonant wave interaction”, J. Fluid Mech., 40:2 (1970), 251–271 | DOI
[9] McColdrick L. F., “On Wilton's ripples: a special case of resonant interaction”, J. Fluid Mech., 42:1 (1970), 193–200 | DOI
[10] Mandal B. N., “Water waves generated by disturbance at an inertial surface”, Appl. Sci. Res., 45:1 (1988), 67–73 | DOI | MR | Zbl
[11] Mandal B. N., Kundu Krishna, “A note on the singularities in the theory of water waves with an inertial surface”, Austral. Math. Soc., 28:2 (1986), 271–278 | DOI | MR | Zbl
[12] Mandal B. N., Kundu Krishna, “A cylindrical wave-maker in liquid of finite depth with an inertial surface”, Indian. J. Pure and Appl. Math., 20:5 (1989), 505–512 | MR | Zbl
[13] Petters A. S., “The effect of a floating mat on water waves”, Communs Pure and Appl. Math., 3:4 (1950), 319–354 | DOI | MR
[14] Gabov S. A., “O suschestvovanii ustanovivshikhsya voln konechnoi amplitudy na poverkhnosti flotiruyuschei zhidkosti”, Zh. vychisl. matem. i matem. fiz., 28:10 (1988), 1507–1519 | MR | Zbl
[15] Zhevandrov P. N., “Korabelnye volny na poverkhnosti flotiruyuschei zhidkosti”, Zh. vychisl. matem. i matem. fiz., 28:7 (1988), 1110–1115 | MR | Zbl
[16] Tverskoi M. B., “Dispersiya voln ot mgnovennogo tochechnogo istochnika na poverkhnosti flotiruyuschei zhidkosti”, Vestn. Mosk. un-ta. Ser. 3. Fizika. Astronomiya, 31:5 (1990), 83–85 | MR
[17] Gabov S. A., “Melkaya flotiruyuschaya voda i uravnenie Kortevega-de Friza”, Vestn. Mosk. un-ta. Ser. 3. Fizika, Astronomiya, 30:2 (1989), 9–13 | MR | Zbl
[18] Gabov S. A., Tverskoi M. B., “O vychislenii parametrov ustanovivshikhsya voln konechnoi amplitudy na poverkhnosti flotiruyuschei zhidkosti”, Matem. modelirovanie, 1:2 (1989), 109–118 | MR
[19] Gabov S. A., Tverskoi M. B., “Techenie flotiruyuschei zhidkosti konechnoi glubiny pri nalichii peremennogo davleniya na svobodnoi poverkhnosti”, Matem. modelirovanie, 1:3 (1989), 110–122 | MR | Zbl
[20] Tverskoi M. B., “O novykh klassakh reshenii nelineinogo operatornogo uravneniya, opisyvayuschego statsionarnoe techenie flotiruyuschei zhidkosti nad nerovnym dnom”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 161–166 | MR
[21] Gabov S. A., “Techenie flotiruyuschei zhidkosti s obrazovaniem stoyachikh voln nad nerovnym, periodicheski menyayuschimsya dnom”, Zh. vychisl. matem. i matem. fiz., 29:8 (1989), 1129–1143 | MR | Zbl
[22] Gabov S. A., Sveshnikov A. G., “Matematicheskie zadachi dinamiki flotiruyuschei zhidkosti”, Itogi nauki i tekhn. Ser. Matem. analiz, 28, VINITI, M., 1990, 3–86 | MR
[23] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR
[24] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[25] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR
[26] Gabov S. A., Vvedenie v teoriyu nelineinykh voln, Izd-vo MGU, M., 1988 | MR | Zbl
[27] Nekrasov A. I., “Tochnaya teoriya voln ustanovivshegosya vida na poverkhnosti tyazheloi zhidkosti”, Sobr. soch., v. 1, Fizmatgiz, M., 1961, 358–439
[28] Gabov S. A., Tverskoi M. B., “Ob issledovanii techeniya tyazheloi zhidkosti pri nalichii periodicheskogo vneshnego vozdeistviya”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 501–512 | MR | Zbl
[29] Tverskoi M. B., “O statsionarnom techenii tyazheloi zhidkosti nad nerovnym, periodicheski menyayuschimsya dnom”, Zh. vychisl. matem. i matem. fiz., 30:10 (1990), 1526–1539 | MR