A finite splitting algorithm for a complex $J$-symmetric pencil
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 7, pp. 1130-1132
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1992_32_7_a13,
author = {M. S. Sagitov},
title = {A finite splitting algorithm for a complex $J$-symmetric pencil},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1130--1132},
year = {1992},
volume = {32},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a13/}
}
TY - JOUR AU - M. S. Sagitov TI - A finite splitting algorithm for a complex $J$-symmetric pencil JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1130 EP - 1132 VL - 32 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a13/ LA - ru ID - ZVMMF_1992_32_7_a13 ER -
M. S. Sagitov. A finite splitting algorithm for a complex $J$-symmetric pencil. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 7, pp. 1130-1132. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a13/
[1] Sagitov M. S., “Konechnyi algoritm rasschepleniya $J$-simmetrichnoi obobschennoi problemy sobstvennykh znachenii”, Zh. vychisl. matem. i matem. fiz., 30:12 (1990), 1765–1774 | MR
[2] Ikramov X. D., “O matritsakh s dvoinym spektrom i obobschennoi probleme sobstvennykh znachenii $Ax=\lambda Bx$ s kososimmetrichnymi $A$ i $B$”, Chisl. analiz: metody, algoritmy, programmy, Izd-vo MGU, M., 1991, 49–57 | Zbl
[3] Van Loan Ch., “A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix”, Linear Algebra and its Appls., 61 (1984), 233–251 | DOI | MR | Zbl