@article{ZVMMF_1992_32_7_a10,
author = {P. M. Byval'tsev and M. Ya. Ivanov},
title = {A fast method for calculating three-dimensional transonic potential flows in turbomachine blade passages},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1093--1113},
year = {1992},
volume = {32},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a10/}
}
TY - JOUR AU - P. M. Byval'tsev AU - M. Ya. Ivanov TI - A fast method for calculating three-dimensional transonic potential flows in turbomachine blade passages JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 1093 EP - 1113 VL - 32 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a10/ LA - ru ID - ZVMMF_1992_32_7_a10 ER -
%0 Journal Article %A P. M. Byval'tsev %A M. Ya. Ivanov %T A fast method for calculating three-dimensional transonic potential flows in turbomachine blade passages %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 1093-1113 %V 32 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a10/ %G ru %F ZVMMF_1992_32_7_a10
P. M. Byval'tsev; M. Ya. Ivanov. A fast method for calculating three-dimensional transonic potential flows in turbomachine blade passages. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 7, pp. 1093-1113. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_7_a10/
[1] Ballhaus W. F., Jameson A., Albert J., “Implicit approximate-factorization schemes for steady transonic flow problems”, AIAA Journal, 16:6 (1978), 573–579 | DOI
[2] Holst T. L., Ballhaus W. F., “Fast, conservative schemes for the full potential equation applied to transonic flows”, AIAA Journal, 17:2 (1979), 145–152 | DOI | MR | Zbl
[3] Holst T. L., “Implicit algorithm for the conservative transonic full potential equation using an arbitrary mesh”, AIAA Journal, 17:10 (1979), 1038–1045 | DOI | Zbl
[4] Catherall D., “Optimum approximate-factorization schemes for two-dimensional steady potential flows”, AIAA Journal, 20:8 (1985), 1057–1063 | DOI | MR
[5] Catherall D., “The optimization of approximate-factorization schemes for solving elliptic partial differential equations on three dimensional. Featuring a new two-factor scheme”, J. Comput. Phys., 28:2 (1988), 138–159 | DOI | MR
[6] Ivanov M. Ya., Koretskii V. V., “Raschet techenii v dvumernykh i prostranstvennykh soplakh metodom priblizhennoi faktorizatsii”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1365–1381 | MR
[7] Byvaltsev P. M., Ivanov M. Ya., “Metod rascheta potentsialnykh transzvukovykh techenii v reshetkakh turbomashin”, Zh. vychisl. matem. i matem. fiz., 29:3 (1989), 447–459 | MR
[8] Stone H. L., “Iterative solution of implicit approximations of multi-dimensional partial differential equations”, SIAM J. Numer. Analys., 5:3 (1968), 530–558 | DOI | MR | Zbl
[9] Sankar N. L., Tassa Y., “An algorithm for unsteady transonic potential flow past airfoils”, Seventh Internat. Conf. Numer. Methods Fluid Dynamics Proc. (Stanford-Ames, June 1980), 367–373
[10] Malone J. B., Sankar N. L., “Numerical simulation of two-dimensional unsteady transonic flows using the full potential equation”, AIAA Journal, 22:8 (1984), 1033–1041 | DOI
[11] Sankar N. L., Malone J. B., Tassa Y., “An implicit conservative algorithm for steady and unsteady three-dimensional transonic potential flows”, AIAA Fifth Comput. Fluid Dynamics Conf. Proc. (June 1981), 199–212
[12] Sankar N. L., Malone J. B., Tassa Y., “A strongly implicit procedure for steady three-dimensional transonic potential flows”, AIAA Journal, 20:5 (1982), 598–605 | DOI | Zbl
[13] Flores J., Holst T. L., Kwak D., Batiste D. M., “A new consistent spatial differencing scheme for the transonic full-potential equation”, AIAA Journal, 22:8 (1984), 1027–1034 | DOI | MR | Zbl
[14] Ivanov M. Ja., “Numerical simulation of transonic three-dimensional flows in turbine blade passages”, Papers from the 8-th Internat. Symp. on air Breathing. Engrs., ISABE 87-7024, N. Y., 1987, 261–270
[15] Ivanov M. Ja., “Computational grids for fast algorithm of numerical solution of international aerodynamic air breathing engine problems”, Second Internat. Conf. of Numer Grid Generation in Comput. Fluid Dynamics (Miami Beach, Florida, December 1988)
[16] Zhang Jia-Lin, 3$\mathrm{D}$ transonic potential flow computation in an axial-flow compressor rotor by an approximate factorization scheme, ASME Paper No 85-GT-16, 1985
[17] Sankar L. N., Prichard D., Solution of transonic flow past rotor blades using the conservative full potential equation, AIAA Paper No 85-5012, 1985
[18] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[19] Hafez M., Lovell D., Entropy and vorticity corrections for transonic flows, AIAA Paper No 83-1926, 1983 | Zbl
[20] Klopfer G. H., Nixon D., “Nonisentropic potential formulation for transonic flows”, AIAA Journal, 22:6 (1984), 770–776 | DOI | Zbl
[21] Grigorenko V. L., Kraiko A. N., “Ob ispolzovanii potentsialnogo priblizheniya dlya rascheta techenii so skachkami uplotneniya”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1986, no. 2, 121–129
[22] Chaderjian N. M., Steger J. L., The numerical simulation of steady transonic rotational flow using a dual potential formulation, AIAA Paper No 85-0368, 1985
[23] Grossman B., The computation of invisced rotational gasdynamic flows using and alternate velocity decomposition, AIAA Paper No 83-1900, 1983
[24] Lifshits Yu. B., Shagaev A. A., “O potentsialnykh modelyakh transzvukovykh techenii”, Dokl. AN SSSR, 304:6 (1989), 1315–1319 | Zbl
[25] Ivanov M. Ya., Nigmatullin R. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya chislennogo integrirovaniya uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 27:11 (1987), 1725–1735 | MR | Zbl
[26] Ivanov M. Ya., Nigmatullin R. Z., “Primenenie neyavnoi skhemy S. K. Godunova k raschetu techenii idealnogo gaza v soplakh, kanalakh i reshetkakh turbomashin”, Vopr. atomnoi nauki i tekhn. Ser.: Matem. modelirovanie fiz. protsessov, M., 1989, 55–64