@article{ZVMMF_1992_32_6_a2,
author = {S. M. Dzholdybaeva and G. K. Kamenev},
title = {Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {857--866},
year = {1992},
volume = {32},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a2/}
}
TY - JOUR AU - S. M. Dzholdybaeva AU - G. K. Kamenev TI - Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 857 EP - 866 VL - 32 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a2/ LA - ru ID - ZVMMF_1992_32_6_a2 ER -
%0 Journal Article %A S. M. Dzholdybaeva %A G. K. Kamenev %T Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 857-866 %V 32 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a2/ %G ru %F ZVMMF_1992_32_6_a2
S. M. Dzholdybaeva; G. K. Kamenev. Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 6, pp. 857-866. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a2/
[1] Gruber P. M., “Approximation of convex bodies”, Convexity and its Applies, Birkhäuser, Basel etc., 1983, 131–162 | MR
[2] Bushenkov V. A., “Chislennyi algoritm postroeniya proektsii mnogogrannykh mnozhestv”, Aerofiz. i prikl. matem., MFTI, M., 1981, 108–110
[3] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[4] Bushenkov V. A., “Iteratsionnyi metod postroeniya ortogonalnykh proektsii vypuklykh mnogogrannykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1285–1292 | MR | Zbl
[5] Lotov A. V., Vvedenie v ekonomiko-matematicheskoe modelirovanie, Nauka, M., 1984 | MR | Zbl
[6] Kamenev G. K., Metody approksimatsii vypuklykh tel mnogogrannikami i ikh primenenie dlya postroeniya i analiza obobschennykh mnozhestv dostizhimosti, Dis. ...kand. fiz.-matem. nauk, MFTI, M., 1986
[7] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[8] Dzholdybaeva S. M., Kamenev G. K., Eksperimentalnoe issledovanie approksimatsii vypuklykh tel mnogogrannikami, VTs AN SSSR, M., 1991
[9] Kamenev G. K., Issledovanie iteratsionnykh metodov approksimatsii vypuklykh mnozhestv mnogogrannikami, VTs AN SSSR, M., 1986
[10] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[11] Chernykh O. L., “O postroenii vypukloi obolochki konechnogo mnozhestva tochek pri priblizhennykh vychisleniyakh”, Zh. vychisl. matem. i matem. fiz., 28:9 (1988), 1386–1396 | MR | Zbl
[12] Schneider R., “Zur optimalen Approximation konvexer Hyperflächen durch Polyeder”, Math. Ann., 256:3 (1983), 289–301 | DOI | MR
[13] McClure D. E., Vitale R. A., “Polygonal approximation of plane convex bodies”, J. Math. Anal. and Applic., 51:2 (1975), 326–358 | DOI | MR | Zbl
[14] Gruber P. M., “Volume approximation of convex bodies by inscribed polytopes”, Math. Ann., 281:2 (1988), 229–245 | DOI | MR | Zbl