The convergence of iterations based on a continuous analogue of Newton's method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 6, pp. 846-856 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_6_a1,
     author = {T. Zhanlav and I. V. Puzynin},
     title = {The convergence of iterations based on a continuous analogue of {Newton's} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {846--856},
     year = {1992},
     volume = {32},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a1/}
}
TY  - JOUR
AU  - T. Zhanlav
AU  - I. V. Puzynin
TI  - The convergence of iterations based on a continuous analogue of Newton's method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 846
EP  - 856
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a1/
LA  - ru
ID  - ZVMMF_1992_32_6_a1
ER  - 
%0 Journal Article
%A T. Zhanlav
%A I. V. Puzynin
%T The convergence of iterations based on a continuous analogue of Newton's method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 846-856
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a1/
%G ru
%F ZVMMF_1992_32_6_a1
T. Zhanlav; I. V. Puzynin. The convergence of iterations based on a continuous analogue of Newton's method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 6, pp. 846-856. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a1/

[1] Gavurin M. K., “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izv. vuzov. Matematika, 1958, no. 5, 18–31 | MR | Zbl

[2] Zhidkov V. P., Puzynin I. V., “Primenenie nepreryvnogo analoga metoda Nyutona dlya priblizhennogo resheniya odnoi nelineinoi granichnoi zadachi”, Dokl. AN SSSR, 180:1 (1968), 18–21 | Zbl

[3] Gareev F. A., Goncharov S. A., Zhidkov E. P. i dr., “Chislennye resheniya zadach na sobstvennye znacheniya dlya integrodifferentsialnykh uravnenii v teorii yadra”, Zh. vychisl. matem. i matem. fiz., 17:2 (1977), 407–419 | MR | Zbl

[4] Puzynin I. V., Priblizhennoe reshenie kraevykh zadach dlya nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka metodom vvedeniya nepreryvnogo parametra, Dis. ...kand. fiz.-matem. nauk, OIYaI, Dubna, 1969

[5] Ermakov V. V., Kalitkin N. N., “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 491–497 | MR | Zbl

[6] Zhanlav T., Puzynin I. V., O modifikatsii nepreryvnogo analoga metoda Nyutona, Preprint R11-91-100, OIYaI, Dubna, 1991 | MR

[7] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[8] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[9] Lucas T. R., Reddien G. W., “Some collocation methods for nonlinear boundary value problems”, SIAM J. Numer. Analys., 9:2 (1972), 341–356 | DOI | MR | Zbl

[10] Zhanlav T., “O predstavlenii interpolyatsionnykh kubicheskikh splainov cherez $B$-splainy”, Metody splain-funktsii, Vychisl. sistemy, 87, In-t matem. SO AN SSSR, Novosibirsk, 1981, 3–10 | MR