Concommutativity classes generated by matrices with multiple conspectrum
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 6, pp. 835-845 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_6_a0,
     author = {Kh. D. Ikramov},
     title = {Concommutativity classes generated by matrices with multiple conspectrum},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {835--845},
     year = {1992},
     volume = {32},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a0/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Concommutativity classes generated by matrices with multiple conspectrum
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 835
EP  - 845
VL  - 32
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a0/
LA  - ru
ID  - ZVMMF_1992_32_6_a0
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Concommutativity classes generated by matrices with multiple conspectrum
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 835-845
%V 32
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a0/
%G ru
%F ZVMMF_1992_32_6_a0
Kh. D. Ikramov. Concommutativity classes generated by matrices with multiple conspectrum. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 6, pp. 835-845. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_6_a0/

[1] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[2] Hong Y. P., Horn R. A., “A canonical form for matrices under consimilarity”, Linear Algebra and Appl., 102 (1988), 143–168 | DOI | MR | Zbl

[3] Hong Y. P., Horn R. A., “A characterization of unitary congruence”, Linear and Multilinear Algebra, 25:2 (1989), 105–119 | DOI | MR | Zbl

[4] Ikramov X. D., “Forma Shura kompleksnoi matritsy otnositelno psevdopodobiya i ee vychislenie”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1992, no. 3 | MR

[5] Ikramov X. D., Zadachi lineinoi algebry s obobschennymi simmetriyami i chislennye algoritmy ikh resheniya, Dis. ...dokt. fiz.-matem. nauk, MGU, M., 1991

[6] Ikramov X. D., “O klassakh matrits, vydelyaemykh usloviem psevdoperestanovochnosti”, Metody i algoritmy chisl. analiza, Izd-vo Mosk. un-ta, M., 1990, 71–79

[7] Bunse-Gerstner A., Byers R., Mehrmann V., “A quaternion $\mathrm{QR}$ algorithm”, Numer. Math., 55:1 (1989), 83–95 | DOI | MR | Zbl

[8] Bevis J. H., Hall F. J., Hartwig R. E., “Consimilarity and the matrix equation $\mathrm{AX}-\mathrm{XB}=\mathrm{C}$”, Current Trends in Matrix Theory, Amsterdam, 1987, 51–64 | MR | Zbl

[9] Golub G., Van Loan Ch., Matrix computations, Johns Hopkins Univ. Press, Baltimore, 1983 | MR | Zbl