Smooth interpolation of surfaces by parametric splines of the second degree on an irregular triangular grid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 5, pp. 802-807 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_5_a10,
     author = {B. M. Shumilov},
     title = {Smooth interpolation of surfaces by parametric splines of the second degree on an irregular triangular grid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {802--807},
     year = {1992},
     volume = {32},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_5_a10/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - Smooth interpolation of surfaces by parametric splines of the second degree on an irregular triangular grid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 802
EP  - 807
VL  - 32
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_5_a10/
LA  - ru
ID  - ZVMMF_1992_32_5_a10
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T Smooth interpolation of surfaces by parametric splines of the second degree on an irregular triangular grid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 802-807
%V 32
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_5_a10/
%G ru
%F ZVMMF_1992_32_5_a10
B. M. Shumilov. Smooth interpolation of surfaces by parametric splines of the second degree on an irregular triangular grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 5, pp. 802-807. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_5_a10/

[1] Foks A., Pratt M., Vychislitelnaya geometriya. Primenenie v proektirovanii i na proizvodstve, Mir, M., 1982 | MR

[2] Shumilov B. M., “O lokalnoi interpolyatsii na ravnomernoi treugolnoi setke splainami chetvertoi stepeni gladkosti”, Izv. vuzov. Matematika, 1988, no. 5, 77–81 | MR | Zbl

[3] Shumilov B. M., “Lokalnye metody dobavleniya i szhatiya informatsii bikubicheskimi splainami”, Approksimatsiya splainami, Vychisl. sistemy, 121, Novosibirsk, 1987, 96–101 | MR | Zbl

[4] Farin G., “Smooth interpolation to scattered 3D data”, Surfaces in Computer Aided Geometric Design, Proc. Conf. (Oberwolf. Apr. 25–30, 1982), Amsterdam etc., 1983, 43–64 | MR

[5] Farin G., “Triangular Bernstein-Bezier patches”, Computer Aided Geometric Design, 3:2 (1986), 83–127 | DOI | MR

[6] Piper B. R., “Visually smooth interpolation with triangular Bezier patches”, Geometric Modeling, Algorithms and New Trends, SIAM, Philadelphia, PA, USA, 1987, 221–233 | MR

[7] Jiang S., Yang P., “Smooth quadratic interpolation over a convex 3D triangulation”, Khankun syuebao. Acta Aeronaut. et Astronaut Sinica A, 8:4 (1987), 136–439

[8] Shumilov B. M., “Ermitova interpolyatsiya poverkhnostei neyavno zadannymi kvadraticheskimi splainami”, Approksimatsiya splainami, Vychisl. sistemy, 128, Novosibirsk, 1988, 99–108 | MR | Zbl

[9] Miller J. R., “Sculptured surfaces in solid models: issues and alternative approaches”, IEEE Computer Graphics and Applic., 6:12 (1986), 37–48 | DOI

[10] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[11] Hoffmann C., Hopcroft J., “Quadratic blending surfaces”, Computer Aided Design, 18:6 (1986), 301–306 | DOI

[12] Jiang S., Yang P., “$C^1$ rational interpolating surface under local coordinate systems”, Appl. Math. and Mech., 8:6 (1987), 503–508 | DOI | MR | Zbl

[13] Dyn N., Levin D., Rippa S., “Data dependent triangulations for piecewise linear interpolation”, IMA J. Numer. Analys., 10:1 (1990), 137–154 | DOI | MR | Zbl

[14] S'yarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR