@article{ZVMMF_1992_32_4_a3,
author = {A. A. Zlotnik},
title = {Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {542--549},
year = {1992},
volume = {32},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/}
}
TY - JOUR AU - A. A. Zlotnik TI - Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1992 SP - 542 EP - 549 VL - 32 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/ LA - ru ID - ZVMMF_1992_32_4_a3 ER -
%0 Journal Article %A A. A. Zlotnik %T Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1992 %P 542-549 %V 32 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/ %G ru %F ZVMMF_1992_32_4_a3
A. A. Zlotnik. Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 4, pp. 542-549. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/
[1] Zlotnik A. A., “Otsenki skorosti skhodimosti proektsionno-setochnykh metodov dlya giperbolicheskikh uravnenii vtorogo poryadka”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 116–167 | MR
[2] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 422–432 | MR | Zbl
[3] Dryja M., Optimal alternating direction Galerkin method for the parabolic problems in arbitrary region, Inst. Inform. Univ. Warsaw. Repts. No 109, 1982, 3–32
[4] Dryja M., “Alternating direction Galerkin method with capacitance matrix for the parabolic problem with natural boundary condition”, Banach Centr. Publs., 13, PWN, Warszawa, 1984, 725–736 | MR
[5] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 26:11 (1986), 1748–1751 | MR
[6] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR
[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[8] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979
[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR