Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 4, pp. 542-549 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_4_a3,
     author = {A. A. Zlotnik},
     title = {Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {542--549},
     year = {1992},
     volume = {32},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 542
EP  - 549
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/
LA  - ru
ID  - ZVMMF_1992_32_4_a3
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 542-549
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/
%G ru
%F ZVMMF_1992_32_4_a3
A. A. Zlotnik. Properties of a projection-grid method with a quasidecoupled operator for second-order hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 4, pp. 542-549. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a3/

[1] Zlotnik A. A., “Otsenki skorosti skhodimosti proektsionno-setochnykh metodov dlya giperbolicheskikh uravnenii vtorogo poryadka”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 116–167 | MR

[2] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 422–432 | MR | Zbl

[3] Dryja M., Optimal alternating direction Galerkin method for the parabolic problems in arbitrary region, Inst. Inform. Univ. Warsaw. Repts. No 109, 1982, 3–32

[4] Dryja M., “Alternating direction Galerkin method with capacitance matrix for the parabolic problem with natural boundary condition”, Banach Centr. Publs., 13, PWN, Warszawa, 1984, 725–736 | MR

[5] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 26:11 (1986), 1748–1751 | MR

[6] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[8] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR