Calculation of the spatial interaction of a shock wave with a boundary layer on a cylinder
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 4, pp. 623-634 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_4_a10,
     author = {M. Ya. Ivanov and V. G. Krupa},
     title = {Calculation of the spatial interaction of a shock wave with a boundary layer on a cylinder},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {623--634},
     year = {1992},
     volume = {32},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a10/}
}
TY  - JOUR
AU  - M. Ya. Ivanov
AU  - V. G. Krupa
TI  - Calculation of the spatial interaction of a shock wave with a boundary layer on a cylinder
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 623
EP  - 634
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a10/
LA  - ru
ID  - ZVMMF_1992_32_4_a10
ER  - 
%0 Journal Article
%A M. Ya. Ivanov
%A V. G. Krupa
%T Calculation of the spatial interaction of a shock wave with a boundary layer on a cylinder
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 623-634
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a10/
%G ru
%F ZVMMF_1992_32_4_a10
M. Ya. Ivanov; V. G. Krupa. Calculation of the spatial interaction of a shock wave with a boundary layer on a cylinder. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 4, pp. 623-634. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_4_a10/

[1] Shang J. S., “An assesment of numerical solutions of the compressible Navier-Stokes equations”, J. Aircraft, 22:5 (1985), 353–370 | DOI

[2] Brosh A., Kusscy M. I., Hung C. M., “Experimental and numerical investigation of shock wave impingment on a cylinder”, AIAA Journal, 23:6 (1985), 840–846 | DOI

[3] Baldwin B., Lomax H., Thin layer approximation and algebraic model for separated turbulent flows, AIAA Paper No 257, 1978, 8 pp.

[4] MacCormak R. W., An efficient numerical method for solving the time dependent compressible Navier-Stokes equations at high Reynolds number, NASA TM X-73129, 1976

[5] Ivanov M. Ya., Krupa V. G., Nigmatullin P. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave-Stoksa”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 888–901 | MR | Zbl

[6] Ivanov M. Ya., Krupa V. G., “Neyavnyi nefaktorizovannyi metod rascheta turbulentnykh techenii vyazkogo teploprovodnogo gaza v reshetkakh turbomashin”, Zh. vychisl. matem. i matem. fiz., 31:5 (1991), 754–765 | MR

[7] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[8] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[9] Colella P., Woodward P. R., “The piecewise parabolic method (PPM) for gasdynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[10] Chakravarthy S. R., Osher S., A new class of high accuracy TVD schemes for hyperbolic conservation laws, AIAA Paper No 363, 1985, 11 pp.

[11] Beam R. M., Warming R. F., “An implicit factored scheme for the compressible Navier-Stokes equations”, AIAA Journal, 16:4 (1978), 393–402 | DOI | Zbl

[12] Steger J. L., Warming R. F., “Flux vector splitting of the inviscid gas dynamic equation with application to finite difference methods”, J. Comput. Phys., 24:3 (1977), 372–397 | MR