The exact solution of the Navier–Stokes equations for the evolution of the vortex structure in a generalized shear flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 2, pp. 326-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_2_a12,
     author = {M. A. Brutyan and P. L. Krapivsky},
     title = {The exact solution of the {Navier{\textendash}Stokes} equations for the evolution of the vortex structure in a generalized shear flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {326--329},
     year = {1992},
     volume = {32},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a12/}
}
TY  - JOUR
AU  - M. A. Brutyan
AU  - P. L. Krapivsky
TI  - The exact solution of the Navier–Stokes equations for the evolution of the vortex structure in a generalized shear flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 326
EP  - 329
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a12/
LA  - ru
ID  - ZVMMF_1992_32_2_a12
ER  - 
%0 Journal Article
%A M. A. Brutyan
%A P. L. Krapivsky
%T The exact solution of the Navier–Stokes equations for the evolution of the vortex structure in a generalized shear flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 326-329
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a12/
%G ru
%F ZVMMF_1992_32_2_a12
M. A. Brutyan; P. L. Krapivsky. The exact solution of the Navier–Stokes equations for the evolution of the vortex structure in a generalized shear flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 2, pp. 326-329. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a12/

[1] Willmarth W. W., “Structure of turbulence in boundary layers”, Advances Appl. Mech., 15 (1975), 159–254 | DOI

[2] Blackwelder R. F., Eckelmann H., “Streamwise vortices associated with the bursting phenomenon”, J. Fluid Mech., 94 (1979), 577–594 | DOI

[3] Perry A. E., Henbest S. M., Chong M. S., “A theoretical and experimental study of wall turbulence”, J. Fluid Mech., 16 (1986), 207–223 | DOI | MR

[4] Pearson C. F., Abernathy F. H., “Evolution of the flow field associated with a streamwise diffusing vortex”, J. Fluid Mech., 146 (1984), 271–283 | DOI | Zbl

[5] Taylor G. I., “On the decay of vortices in a viscous fluid”, Philos. Mag., 46:6 (1923), 671–674 | Zbl

[6] Nepomnyaschii A. A., “Ob ustoichivosti vtorichnykh techenii vyazkoi zhidkosti v neogranichennom prostranstve”, Prikl. matem. i mekhan., 40:5 (1976), 886–891

[7] Brutyan M. A., Krapivskii P. L., “Ustoichivost periodicheskikh prostranstvennykh techenii vyazkoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 30:4 (1991), 634–638 | MR

[8] Brutyan M. A., Krapivsky P. L., “Stability of a periodic unidirectional flow of viseoelastic fluids”, J. Rheol., 35:4 (1991), 467–476 | DOI

[9] Berker R., “Intégration des équations du mouvement d'un fluide visqueux incompressible”, Encyclopedia Phys., 8, no. 2, Springer, N. Y. etc., 1963, 1–384 | MR

[10] Wang C. Y., “Exact solutions of the Navier-Stokes equations — the generalized Beltrami flows, review and extension”, Acta Mech., 81 (1990), 69–74 | DOI | MR | Zbl

[11] Craik A. D. D., Criminale W. O., “Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier-Stokes equations”, Proc. Roy. Soc. London A, 406 (1986), 13–26 | DOI | MR | Zbl

[12] Goldshtik M. A., Shtern B. H., Yavorskii H. I., Vyazkie techeniya s paradoksalnymi svoistvami, Nauka, Novosibirsk, 1989