Increasing the accuracy of the Godunov scheme for calculating stationary supersonic gas flows based on the solution of the generalized Riemann problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 2, pp. 311-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_2_a10,
     author = {I. S. Menshov},
     title = {Increasing the accuracy of the {Godunov} scheme for calculating stationary supersonic gas flows based on the solution of the generalized {Riemann} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {311--319},
     year = {1992},
     volume = {32},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a10/}
}
TY  - JOUR
AU  - I. S. Menshov
TI  - Increasing the accuracy of the Godunov scheme for calculating stationary supersonic gas flows based on the solution of the generalized Riemann problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 311
EP  - 319
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a10/
LA  - ru
ID  - ZVMMF_1992_32_2_a10
ER  - 
%0 Journal Article
%A I. S. Menshov
%T Increasing the accuracy of the Godunov scheme for calculating stationary supersonic gas flows based on the solution of the generalized Riemann problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 311-319
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a10/
%G ru
%F ZVMMF_1992_32_2_a10
I. S. Menshov. Increasing the accuracy of the Godunov scheme for calculating stationary supersonic gas flows based on the solution of the generalized Riemann problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 2, pp. 311-319. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_2_a10/

[1] Riman B., Sochineniya, OGIZ, M., 1948

[2] Ivanov M. Ya., Kraiko A. N., Mikhailov N. V., “Metod skvoznogo scheta dlya dvumernykh i prostranstvennykh sverkhzvukovykh techenii, I”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 441–463 | MR | Zbl

[3] Ivanov M. Ya., Kraiko A. N., “Metod skvoznogo scheta dlya dvumernykh i prostranstvennykh sverkhzvukovykh techenii, II”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972), 805–813 | MR

[4] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[5] Glimm J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Communs Pure and Appl. Math., 18 (1965), 697–715 | DOI | MR | Zbl

[6] Chorin A. J., “Random choise solution of hyperbolic systems”, J. Comput. Phys., 22 (1976), 517–534 | DOI | MR

[7] Colella P., Woodward P. R., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[8] Marshall G., Plohr B., “A random choice method for two-dimensional steady supersonic shock wave diffraction problems”, J. Comput. Phys., 56 (1984), 410–427 | DOI | MR | Zbl

[9] Menshov I. S., “Povyshenie poryadka approksimatsii skhemy Godunova na osnove resheniya obobschennoi zadachi Rimana”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1357–1371 | MR

[10] Menshov I. S., “Obobschennaya zadacha o raspade proizvolnogo razryva”, Prikl. matem. i mekhan., 1991, no. 1, 86–94 | MR

[11] Chernyi G. G., Gazovaya dinamika, Nauka, M., 1988

[12] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR

[13] Shmyglevskii Yu. D., “Raschet osesimmetrichnykh sverkhzvukovykh potokov gaza v okrestnosti izloma obrazuyuschei tela vrascheniya”, Sb. teoreticheskikh rabot po aerodinamike, Oborongiz, M., 1957

[14] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[15] Harten A., Osher S., “Uniformly high-order accurate nonoscillatory schemes, I”, J. Numer. Analys., 24:2 (1987), 279–310 | DOI | MR

[16] Van Leer B., “Towards the ultimate conservative difference scheme. V: A Second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI