On soliton perturbations excited by an oscillator in a boundary layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 1, pp. 71-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_1_a5,
     author = {S. P. Popov},
     title = {On soliton perturbations excited by an oscillator in a boundary layer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {71--81},
     year = {1992},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a5/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - On soliton perturbations excited by an oscillator in a boundary layer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 71
EP  - 81
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a5/
LA  - ru
ID  - ZVMMF_1992_32_1_a5
ER  - 
%0 Journal Article
%A S. P. Popov
%T On soliton perturbations excited by an oscillator in a boundary layer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 71-81
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a5/
%G ru
%F ZVMMF_1992_32_1_a5
S. P. Popov. On soliton perturbations excited by an oscillator in a boundary layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a5/

[1] Zhuk V. I., Popov S. P., “O nelineinom razvitii dlinnovolnovykh nevyazkikh vozmuschenii v pogranichnom sloe”, Prikl. mekhan. i tekhn. fiz., 1989, no. 3, 101–108 | MR

[2] Zhuk V. I., Popov S. P., “O resheniyakh neodnorodnogo uravneniya Bendzhamina-Ono”, Zh. vychisl. matem. i matem. fiz., 29:12 (1989), 1852–1862 | MR | Zbl

[3] Matsuno Y., “Dynamical motions of algebraic solilons of a model equation for deep water waves”, J. Phys. Soc. Japan, 57:5 (1988), 1577–1593 | DOI | MR

[4] Boris J. P., Book D. L., “Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 11:1 (1973), 38–69 | DOI | Zbl