Solution of the generalized Neyman–Pearson problem using the methods for the optimal partitioning of sets
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 1, pp. 167-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_1_a14,
     author = {E. M. Kiseleva},
     title = {Solution of the generalized {Neyman{\textendash}Pearson} problem using the methods for the optimal partitioning of sets},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {167--173},
     year = {1992},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a14/}
}
TY  - JOUR
AU  - E. M. Kiseleva
TI  - Solution of the generalized Neyman–Pearson problem using the methods for the optimal partitioning of sets
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 167
EP  - 173
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a14/
LA  - ru
ID  - ZVMMF_1992_32_1_a14
ER  - 
%0 Journal Article
%A E. M. Kiseleva
%T Solution of the generalized Neyman–Pearson problem using the methods for the optimal partitioning of sets
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 167-173
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a14/
%G ru
%F ZVMMF_1992_32_1_a14
E. M. Kiseleva. Solution of the generalized Neyman–Pearson problem using the methods for the optimal partitioning of sets. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 1, pp. 167-173. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_1_a14/

[1] Neyman J., Pearson E. S., “On the problem of the most efficient tests of statistical hipotheses”, Philos. Trans. Roy. Soc. Ser. A, 231 (1933), 289–337 | DOI

[2] Danzig G., Wald A., “On the fundamental lemma of Neyman and Pearson”, Ann. Math. Statist., 22 (1951), 87–93 | DOI | MR

[3] Leman E. L., Proverka statisticheskikh gipotez, Nauka, M., 1964 | MR

[4] Rao S. R., Lineinye statisticheskie metody i ikh primeneniya, Nauka, M., 1968 | MR | Zbl

[5] Francis R. L., Wright G. F., “Some duality relationships for the generalized Neyman-Pearson problem”, J. Optimizat., 4 (1969), 394–412 | MR | Zbl

[6] Trukhaev P. I., Khomenyuk V. V., Teoriya neklassicheskikh variatsionnykh zadach, Izd-vo LGU, Leningrad, 1971 | MR

[7] Corley H. W., Roberts S. D., “A partitioning problem with applications in regional design”, Operat Res., 20:5 (1972), 1010–1019 | DOI | MR | Zbl

[8] Kuk Yu. V., “Ob odnom obobschenii lemmy Neimana-Pirsona v teorii raspoznavaniya signalov”, Kibernetika, 1978, no. 5, 79–82 | MR | Zbl

[9] Kiseleva E. M., “Reshenie odnoi zadachi optimalnogo razbieniya s razmescheniem tsentrov tyazhesti podmnozhestv”, Zh. vychisl. matem. v matem. fiz., 29:5 (1989), 709–722 | MR | Zbl

[10] Kiseleva E. M., Shafiro B. G., Mnogoproduktovaya zadacha optimalnogo razbieniya s dopolnitelnymi ogranicheniyami, Dep. v VINITI 12.03.90, No 1345-V90, 18 pp.

[11] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Nauk. dumka, Kiev, 1979 | MR | Zbl