Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 12, pp. 1900-1915 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_12_a5,
     author = {S. Sh. Bimuratov and S. I. Kabanikhin},
     title = {Solution of one-dimensional inverse problems of electrodynamics by the {Newton{\textendash}Kantorovich} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1900--1915},
     year = {1992},
     volume = {32},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_12_a5/}
}
TY  - JOUR
AU  - S. Sh. Bimuratov
AU  - S. I. Kabanikhin
TI  - Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1900
EP  - 1915
VL  - 32
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_12_a5/
LA  - ru
ID  - ZVMMF_1992_32_12_a5
ER  - 
%0 Journal Article
%A S. Sh. Bimuratov
%A S. I. Kabanikhin
%T Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1900-1915
%V 32
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_12_a5/
%G ru
%F ZVMMF_1992_32_12_a5
S. Sh. Bimuratov; S. I. Kabanikhin. Solution of one-dimensional inverse problems of electrodynamics by the Newton–Kantorovich method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 12, pp. 1900-1915. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_12_a5/

[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[2] Kabanikhin S. I., Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii, Nauka, Novosibirsk, 1988 | MR | Zbl

[3] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[4] Beltyukov B. A., “K resheniyu nelineinykh integralnykh uravnenii metodom Nyutona”, Differents. ur-niya, 6:6 (1960), 1072–1084

[5] Vasilev F. P., Yachimovich M. D., “Ob iterativnoi regulyarizatsii metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:3 (1981), 775–778 | MR

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[7] Reznitskaya K. G., “Teorema suschestvovaniya i edinstvennosti odnoi nelineinoi obratnoi zadachi teploprovodnosti. Metod Nyutona-Kantorovicha”, Matem. probl. geofiz., Izd-vo SO AN SSSR, Novosibirsk, 1972, 152–165

[8] Antonenko O. F., Reznitskaya K. G., “Metod Nyutona-Kantorovicha v obratnoi dinamicheskoi zadache seismiki”, Obratnye zadachi dlya differents. ur-nii matem fiz., VTs SO AN SSSR, Novosibirsk, 1978, 18–25 | MR

[9] Roger A., “N-K algorithm applied to an electromagnetic inverse problem”, AP-29, IEEE Trims. Antennas Prop., 1981, 232–238 pp. | MR

[10] Murch R. D., Tan D. G. N., Wall D. J. N., “N-K method applied to two-dimensional inverse scattering for an enterior Helmholtz problem”, Inverse Probl., 4:4 (1988), 1117–1128 | DOI | MR | Zbl

[11] Xie G. Q., “A new iterative method for solving the coefficient inverse problem of the wave equation”, Communs Pure and Appl. Math., 39 (1980), 307–322 | DOI | MR

[12] Barashkov A. S., Dmitriev V. P., “Obratnye zadachi zondirovaniya ionosfery”, Vychisl. metody i programmirovanie, XX, Izd-vo MGU, M., 1973, 315–322

[13] Blagoveschenskii A. S., “O kvazidvumernoi obratnoi zadache dlya volnovogo uravneniya”, Tr. MI AN SSSR, 115, M., 1971, 57–69

[14] Chen Y. M., Liu J. Q., “A numerical algorithm for solving inverse problems of two-dimensional wave equations”, J. Comput. Phys., 50 (1983), 193–208 | DOI | MR | Zbl

[15] Liu J. Q., Chen Y. M., “An iterative algorithm for solving inverse problems of two-dimensional diffusion equations”, SIAM J. Scient. and Statist. Comput., 5:2 (1984), 255–270 | DOI | MR

[16] Chen Y. M., Liu X. Y., “A generalized pulse-spectrum technique (G. P. S. T.) for determining time-dependent coefficients of one-dimensional diffusion equations”, SIAM J. Scient. and Statist. Comput., 8:3 (1987), 436–446 | DOI | MR

[17] Xie G. Q., Chen Y. M., “A modified pulse spectrum technique for solving inverse problems of two-dimensional elastic wave equation”, Appl. Numer. Math., 1 (1985), 211–237 | DOI | MR

[18] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR