The existence of a solution and a proof of the Bubnov–Galerkin method for the one-dimensional Reissner system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 11, pp. 1756-1766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_11_a6,
     author = {V. Sh. Odishariya},
     title = {The existence of a solution and a proof of the {Bubnov{\textendash}Galerkin} method for the one-dimensional {Reissner} system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1756--1766},
     year = {1992},
     volume = {32},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a6/}
}
TY  - JOUR
AU  - V. Sh. Odishariya
TI  - The existence of a solution and a proof of the Bubnov–Galerkin method for the one-dimensional Reissner system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1756
EP  - 1766
VL  - 32
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a6/
LA  - ru
ID  - ZVMMF_1992_32_11_a6
ER  - 
%0 Journal Article
%A V. Sh. Odishariya
%T The existence of a solution and a proof of the Bubnov–Galerkin method for the one-dimensional Reissner system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1756-1766
%V 32
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a6/
%G ru
%F ZVMMF_1992_32_11_a6
V. Sh. Odishariya. The existence of a solution and a proof of the Bubnov–Galerkin method for the one-dimensional Reissner system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 11, pp. 1756-1766. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a6/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR

[2] Reissner E., “Finite deflections of sandwich plates”, J. Aeronaut. Sci., 15:7 (1948), 435–446 ; Errata, 15:1 (1950), 125 | MR | MR

[3] Ramachandra N., Valasarajan K., “Large deflection analysis of clamped skew sandwich plates by parametric differentiation”, Comput. and Structure, 17:4 (1983), 599–602 | DOI | Zbl

[4] Wang C. T., Principle and application of complementary energy method for thin homogeneous and sandwich plates and shells with finite deflections, NACA TN No 2620, 1952, 34 pp. | MR

[5] Vorovich I. I., “O nekotorykh pryamykh metodakh v nelineinoi teorii kolebanii pologikh obolochek”, Izv. AN SSSR. Ser. matem., 21 (1957), 747–789

[6] Volmir A. S., Nelineinaya dinamika plastinok i obolochek, Nauka, M., 1972 | MR

[7] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1984 | MR

[8] Peradze J. G., “The dynamic problem for Reissner's one-dimensional system”, Numer. Functionals. Analys. and Optimizat., 12:5–6 (1991), 551–562 | DOI | MR | Zbl

[9] Bernshtein S. H., “Ob odnom klasse funktsionalnykh uravnenii s chastnymi proizvodnymi”, Sobr. soch., v. 3, Izd-vo AN SSSR, M., 1960, 323–331

[10] Pokhozhaev S. I., “Ob odnom klasse kvazilineinykh giperbolicheskikh uravnenii”, Matem. sb., 96:1 (1975), 152–166

[11] Nishihara K., “On global solution of some quasi-linear hyperbolic equation”, Tokyo J. Math., 7:2 (1984), 437–459 | DOI | MR | Zbl

[12] Morozov H. F., “K nelineinoi teorii tonkikh plastin”, Dokl. AN SSSR, 114:5 (1957), 968–971 | Zbl

[13] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977

[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR