The best formulae for the approximate computation of discrete Fourier transforms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 11, pp. 1709-1719 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1992_32_11_a2,
     author = {M. G. Ber and V. N. Malozemov},
     title = {The best formulae for the approximate computation of discrete {Fourier} transforms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1709--1719},
     year = {1992},
     volume = {32},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a2/}
}
TY  - JOUR
AU  - M. G. Ber
AU  - V. N. Malozemov
TI  - The best formulae for the approximate computation of discrete Fourier transforms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1992
SP  - 1709
EP  - 1719
VL  - 32
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a2/
LA  - ru
ID  - ZVMMF_1992_32_11_a2
ER  - 
%0 Journal Article
%A M. G. Ber
%A V. N. Malozemov
%T The best formulae for the approximate computation of discrete Fourier transforms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1992
%P 1709-1719
%V 32
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a2/
%G ru
%F ZVMMF_1992_32_11_a2
M. G. Ber; V. N. Malozemov. The best formulae for the approximate computation of discrete Fourier transforms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 32 (1992) no. 11, pp. 1709-1719. http://geodesic.mathdoc.fr/item/ZVMMF_1992_32_11_a2/

[1] Mangasarian O. L., Schumaker L. L., “Best summation formulae and discrete splines”, SIAM J. Numer. Analys., 10:3 (1973), 448–459 | DOI | MR | Zbl

[2] Makklellan Dzh. X., Reider Ch. M., Primenenie teorii chisel v tsifrovoi obrabotke signalov, Radio i svyaz, M., 1983

[3] Bleikhut R., Bystrye algoritmy tsifrovoi obrabotki signalov, Mir, M., 1989 | MR

[4] Schoenberg I. J., “Notes on spline functions. I: The limits of the interpolating periodic spline functions as their degree tends to infinity”, Indag. Math., 34:5 (1972), 412–422 | MR

[5] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR