Iterative regularization of a penalty method for an infinite-dimensional saddle-point search problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 9, pp. 1289-1304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_9_a2,
     author = {N. M. Novikova},
     title = {Iterative regularization of a penalty method for an infinite-dimensional saddle-point search problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1289--1304},
     year = {1991},
     volume = {31},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a2/}
}
TY  - JOUR
AU  - N. M. Novikova
TI  - Iterative regularization of a penalty method for an infinite-dimensional saddle-point search problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1289
EP  - 1304
VL  - 31
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a2/
LA  - ru
ID  - ZVMMF_1991_31_9_a2
ER  - 
%0 Journal Article
%A N. M. Novikova
%T Iterative regularization of a penalty method for an infinite-dimensional saddle-point search problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1289-1304
%V 31
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a2/
%G ru
%F ZVMMF_1991_31_9_a2
N. M. Novikova. Iterative regularization of a penalty method for an infinite-dimensional saddle-point search problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 9, pp. 1289-1304. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a2/

[1] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[2] Novikova N. M., “Stokhasticheskii kvazigradientnyi metod resheniya zadach optimizatsii v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 24:3 (1984), 348–362 | MR | Zbl

[3] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[4] Bakushinskii A. B., Polyak B. T., “K resheniyu variatsionnykh neravenstv”, Dokl. AN SSSR, 219:5 (1974), 1038–1041

[5] Novikova N. M., “Ob iterativnoi regulyarizatsii approksimatsii metoda shtrafov v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 949–954 | MR | Zbl

[6] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979 | MR

[7] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1986 | MR

[8] Novikova N. M., “Metod poiska stokhasticheskoi sedlovoi tochki”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 39–49 | MR

[9] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[10] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[11] Vazan M., Stokhasticheskaya approksimatsiya, Mir, M., 1972 | MR

[12] Novikova N. M., “Stokhasticheskie metody chislennogo resheniya vypuklykh variatsionnykh neravenstv”, Zh. vychisl. matem. i matem. fiz., 28:2 (1988), 186–197 | MR

[13] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[14] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR