@article{ZVMMF_1991_31_9_a11,
author = {L. G. Volkov},
title = {The construction of completely conservative difference schemes for the equations of the nonlinear theory of elasticity},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1392--1401},
year = {1991},
volume = {31},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a11/}
}
TY - JOUR AU - L. G. Volkov TI - The construction of completely conservative difference schemes for the equations of the nonlinear theory of elasticity JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 1392 EP - 1401 VL - 31 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a11/ LA - ru ID - ZVMMF_1991_31_9_a11 ER -
%0 Journal Article %A L. G. Volkov %T The construction of completely conservative difference schemes for the equations of the nonlinear theory of elasticity %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 1392-1401 %V 31 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a11/ %G ru %F ZVMMF_1991_31_9_a11
L. G. Volkov. The construction of completely conservative difference schemes for the equations of the nonlinear theory of elasticity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 9, pp. 1392-1401. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a11/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[3] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR
[4] Sod G. A., Numerical methods in fluid dynamics, Cambridge Univ. Press, N. Y., 1985 | MR | Zbl
[5] Lax P. D., Wendroff B., “Systems of conservation laws”, Communs Pure and Appl. Math., 13 (1960), 217–237 | DOI | MR | Zbl
[6] Lerat A., “Une classe de chemas aux differences implicites pour les systemes hyperboliques de lois conservation”, Compt. rend. Acad. Sci. Paris A, 288 (1979), 1033–1036 | MR | Zbl
[7] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1985 | Zbl
[8] Favorskii A. A., “Ob ispolzovanii variatsionnykh printsipov v chislennom modelirovanii”, Sovrem. probl. matem. fiz. i vychisl. matem., M., 1982, 312–320 | MR
[9] Volkov L. G., “Zadacha o raspade razryvov dlya neszhimaemogo izotropnogo uprugogo tela”, Dinamika sploshnoi sredy, 63, Novosibirsk, 1983, 33–46 | Zbl
[10] Volkov L. G., “O vvedenii vyazkosti tipa Foigta dlya izucheniya ustoichivykh po Laksu udarnykh voln v uprugom neszhimaemom izotropnom materiale”, Differents. ur-niya i primeneniya, Tr. 2-i konf., Ruse, 1981, 131–134
[11] Konovalov A. V., Reshenie zadach teorii uprugosti v napryazheniyakh, Izd-vo NGU, Novosibirsk, 1979 | MR
[12] Godunov S. K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978 | MR
[13] Volkov L. G., Chetvertyi natsionalnyi kongress teoreticheskoi i prikladnoi mekhaniki, v. 2, Varna, 1981, 309–314
[14] Blend A., Nelineinaya dinamicheskaya teoriya uprugosti, Nauka, M., 1972
[15] Goldenblat A. G., Aktualnye problemy nelineinoi uprugosti, Nauka, M., 1971
[16] Kuropatenko V. F., “Lokalnaya konservativnost raznostnykh skhem dlya uravnenii gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 25:8 (1985), 1176–1188 | MR
[17] Tang T., Ting T. C. T., “Waves curves for the Riemann problem of plane waves in isotropic elastic solids”, Internat. J. Engng. Sci., 25:11/12 (1987), 1343–1383 | DOI | MR