@article{ZVMMF_1991_31_9_a0,
author = {V. G. Belsky},
title = {A multigrid method for solving variational inequalities},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1267--1277},
year = {1991},
volume = {31},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a0/}
}
V. G. Belsky. A multigrid method for solving variational inequalities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 9, pp. 1267-1277. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_9_a0/
[1] Kyuntsi G., Krelle V., Nelineinoe programmirovanie, Sov. radio, M., 1965
[2] Daugavet V. A., “Modifikatsiya metoda Vulfa”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 504–508 | MR
[3] Pshenichnyi B. N., Metod linearizatsii, Nauka, M., 1983 | MR
[4] Tsurkov V. I., Dekompozitsiya v zadachakh bolshoi razmernosti, Nauka, M., 1981 | MR
[5] Litvinchev I. S., “Metod razlozheniya dlya zadach optimizatsii, ne obladayuschikh blochnoseparabelnoi strukturoi”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 332–339 | MR | Zbl
[6] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl
[7] Bakhvalov N. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 861–883 | Zbl
[8] Astrakhantsev G. P., “Konechnoraznostnyi metod resheniya tretei kraevoi zadachi dlya ellipticheskikh i parabolicheskikh uravnenii v proizvolnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 11:1 (1971), 105–120
[9] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989 | MR
[10] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR
[11] Belyi M. V., Bulgakov V. E., Zolotov A. B., “Poluiteratsionnyi mnogosetochnyi metod i ego programmnaya realizatsiya dlya resheniya prostranstvennykh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 27:6 (1987), 875–888 | MR
[12] Mc Cormick S. F., “Multigrid methods for variational problems: further results”, SIAM J. Numer. Analys., 21:2 (1984), 255–263 | DOI | MR
[13] Braess D., Hackbusch W., “A new convergence proof for the multigrid method including the $V$-cycle”, SIAM J. Numer. Analys., 20:5 (1983), 967–975 | DOI | MR | Zbl
[14] Hackbusch W., Mittelmann H. D., “On multi-grid methods for variational inequalities”, Numer. Math., 42 (1983), 65–76 | DOI | MR | Zbl
[15] Vovkushevskii A. V., Kuzmina O. V., Chislennye eksperimenty s bystroskhodyaschimsya protsessom minimizatsii funktsionalov metoda konechnykh elementov v zadachakh teorii uprugosti, Dep. v VINITI 11.08.87, No 5817-V87
[16] Hoppe R. H. W., “Multi-grid solutions to the elastic plastic torsion problem in multiply connected domains”, Internat. J. Numer. Meth. Engng., 26:3 (1988), 631–646 | DOI | MR | Zbl