Error bounds in the simple Lanczos procedure for computing functions of
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 970-983 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_7_a3,
     author = {V. L. Druskin and L. A. Knizhnerman},
     title = {Error bounds in the simple {Lanczos} procedure for computing functions of},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {970--983},
     year = {1991},
     volume = {31},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a3/}
}
TY  - JOUR
AU  - V. L. Druskin
AU  - L. A. Knizhnerman
TI  - Error bounds in the simple Lanczos procedure for computing functions of
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 970
EP  - 983
VL  - 31
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a3/
LA  - ru
ID  - ZVMMF_1991_31_7_a3
ER  - 
%0 Journal Article
%A V. L. Druskin
%A L. A. Knizhnerman
%T Error bounds in the simple Lanczos procedure for computing functions of
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 970-983
%V 31
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a3/
%G ru
%F ZVMMF_1991_31_7_a3
V. L. Druskin; L. A. Knizhnerman. Error bounds in the simple Lanczos procedure for computing functions of. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 970-983. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a3/

[1] Lanczos C., “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators”, J. Res. Nat. Bur. Standards. Sect. B, 45 (1950), 225–280 | MR

[2] Parlett B. N., Scott D. S., “The Lanczos algorithm with selective orthogonalization”, Math. Comput., 33:145 (1979), 217–238 | DOI | MR | Zbl

[3] Parlett B., Simmetrichnaya problema sobstvennykh znachenii, Mir, M., 1983 | MR | Zbl

[4] Simon H. D., “The Lanczos algorithm with partial reorthogonalization”, Math. Comput., 42:165 (1984), 115–142 | DOI | MR

[5] Simon H. D., “Analysis of the symmetric Lanczos algorithm with reorthogonalization methods”, Linear Algebra and Applic., 61 (1984), 101–131 | DOI | MR | Zbl

[6] Sobyanin A. V., Analiz oshibok okrugleniya i ustoichivost v metodakh tipa Lantsosha, Preprint No 87, OVM AN SSSR, M., 1985, 15 pp. | MR

[7] Sobyanin A. V., “Reshenie problemy sobstvennykh znachenii dlya simmetrichnykh matrits bolshogo poryadka”, Vychisl. protsessy i sistemy, 5, M., 1987, 174–179 | MR | Zbl

[8] Paige C. C., The computation of eigenvalues and eigenvectors of very large sparse matrices, Ph. D. Thesis, Univ. of London, London, 1971 | Zbl

[9] Paige C. C., “Error analysis of the Lanczos algorithm for tridiagonalizing of a symmetric matrix”, J. Inst. Math. Applic., 18:3 (1976), 341–349 | DOI | MR | Zbl

[10] Paige C. C., “Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem”, Linear Algebra and Applic., 34 (1980), 235–258 | DOI | MR | Zbl

[11] Paige C. C., Saunders M. A., “Solution of sparse indefinite systems of linear equations”, SIAM J. Numer. Analys., 12:4 (1975), 617–629 | DOI | MR | Zbl

[12] Parlett B. N., “A new look at the Lanczos algorithm for solving symmetric systems of linear equations”, Linear Algebra and Applic., 29 (1980), 323–346 | DOI | MR | Zbl

[13] Simon H. D., The Lanczos algorithm for solving linearsystems, Ph. D. Thesis, Univ. of California, Berkely, 1982

[14] Nour-Omid B., Parlett B. N., Taylor R. L., “A Newton-Lanczos methodf or solution of nonlinear finite element equations”, Comput. and Struct., 16:1–4 (1983), 241–252 | DOI | Zbl

[15] Nour-Omid B., Clough R. W., “Dynamic analysis of structure using Lanczos coordinates”, Earth-quake Engng. and. Struct. Dynamics, 12:4 (1984), 565–577 | DOI

[16] Nour-Omid B., “Lanczos method for heat conduction analysis”, Internat. J. Numer. Meth. Engng., 24:1 (1987), 251–262 | DOI | Zbl

[17] Van der Vorst H. A., “An iterative solution method for solving $f(A)x=b$, using Krylov subspace information obtained for the symmetric positive definite matrix $A$”, J. Comput. Appl. Math., 18:2 (1987), 249–263 | DOI | MR | Zbl

[18] Druskin V. L., Knizhnerman L. A., “Spektralnyi differentsialno-raznostnyi metod chislennogo resheniya trekhmernykh nestatsionarnykh zadach elektrorazvedki”, Izv. AN SSSR. Ser. Fiz. Zemli, 1988, no. 8, 63–74 | MR

[19] Ikramov X. D., “Razrezhennye matritsy”, Itogi nauki i tekhn. Matem. analiz, 20, VINITI, M., 1982, 179–260 | MR

[20] Druskin V. L., Knizhnerman L. A., Ispolzovanie operatornykh ryadov po ortogonalnym mnogochlenam pri vychislenii funktsii ot samosopryazhennykh operatorov i obosnovanie fenomena Lantsosha, Dep. v VINITI 02.03.87, No 1535-V87, IZMIR AN SSSR, M., 1987, 47 pp.

[21] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl

[22] Cullum J., Willoughby R. A., “The Lanczos phenomenon — an interpretation based upon conjugate gradient optimization”, Linear Algebra and Applic., 29 (1980), 63–90 | DOI | MR | Zbl

[23] Lebedev V. I., “Ob iteratsionnykh metodakh resheniya operatornykh uravnenii so spektrom, lezhaschim na neskolkikh otrezkakh”, Zh. vychisl. matem. i matem. fiz., 9:6 (1969), 1247–1252 | Zbl