The method of optimal descent along basis elements for solving singular systems of linear algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 962-969 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_7_a2,
     author = {V. V. Pospelov},
     title = {The method of optimal descent along basis elements for solving singular systems of linear algebraic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {962--969},
     year = {1991},
     volume = {31},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/}
}
TY  - JOUR
AU  - V. V. Pospelov
TI  - The method of optimal descent along basis elements for solving singular systems of linear algebraic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 962
EP  - 969
VL  - 31
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/
LA  - ru
ID  - ZVMMF_1991_31_7_a2
ER  - 
%0 Journal Article
%A V. V. Pospelov
%T The method of optimal descent along basis elements for solving singular systems of linear algebraic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 962-969
%V 31
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/
%G ru
%F ZVMMF_1991_31_7_a2
V. V. Pospelov. The method of optimal descent along basis elements for solving singular systems of linear algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 962-969. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/

[1] Pospelov V. V., Chichagov A. V., “Metod vosstanovleniya utrachennykh fragmentov signala”, Avtometriya, 1988, no. 1, 60–64

[2] Morozov V. A., Pospelov V. V., Tsifrovaya obrabotka signalov, Izd-vo MGU, M., 1987

[3] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 2, Nauka, M., 1962

[4] Nikolaeva M. V., “O relaksatsionnom metode Sausvella (kriticheskii obzor)”, Tr. Matem. in-ta AN SSSR, 28, M., 1949, 160–182 | MR | Zbl

[5] Synge J. L., “A geometrical interpretation of the relaxation method”, Quart. Appl. Math., 2 (1944) | MR | Zbl

[6] Temple G., “The general theory of relaxation methods applied to linear systems”, Proc. Roy. Soc. (A), 169 (1939) | DOI