The method of optimal descent along basis elements for solving singular systems of linear algebraic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 962-969
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZVMMF_1991_31_7_a2,
author = {V. V. Pospelov},
title = {The method of optimal descent along basis elements for solving singular systems of linear algebraic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {962--969},
year = {1991},
volume = {31},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/}
}
TY - JOUR AU - V. V. Pospelov TI - The method of optimal descent along basis elements for solving singular systems of linear algebraic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 962 EP - 969 VL - 31 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/ LA - ru ID - ZVMMF_1991_31_7_a2 ER -
%0 Journal Article %A V. V. Pospelov %T The method of optimal descent along basis elements for solving singular systems of linear algebraic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 962-969 %V 31 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/ %G ru %F ZVMMF_1991_31_7_a2
V. V. Pospelov. The method of optimal descent along basis elements for solving singular systems of linear algebraic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 962-969. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a2/
[1] Pospelov V. V., Chichagov A. V., “Metod vosstanovleniya utrachennykh fragmentov signala”, Avtometriya, 1988, no. 1, 60–64
[2] Morozov V. A., Pospelov V. V., Tsifrovaya obrabotka signalov, Izd-vo MGU, M., 1987
[3] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 2, Nauka, M., 1962
[4] Nikolaeva M. V., “O relaksatsionnom metode Sausvella (kriticheskii obzor)”, Tr. Matem. in-ta AN SSSR, 28, M., 1949, 160–182 | MR | Zbl
[5] Synge J. L., “A geometrical interpretation of the relaxation method”, Quart. Appl. Math., 2 (1944) | MR | Zbl
[6] Temple G., “The general theory of relaxation methods applied to linear systems”, Proc. Roy. Soc. (A), 169 (1939) | DOI