An iterative-marching scheme for calculating the flow round three-dimensional surfaces at low supersonic velocities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 1051-1065 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_7_a10,
     author = {Yu. B. Lifshits and V. S. Sakovich},
     title = {An iterative-marching scheme for calculating the flow round three-dimensional surfaces at low supersonic velocities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1051--1065},
     year = {1991},
     volume = {31},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a10/}
}
TY  - JOUR
AU  - Yu. B. Lifshits
AU  - V. S. Sakovich
TI  - An iterative-marching scheme for calculating the flow round three-dimensional surfaces at low supersonic velocities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1051
EP  - 1065
VL  - 31
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a10/
LA  - ru
ID  - ZVMMF_1991_31_7_a10
ER  - 
%0 Journal Article
%A Yu. B. Lifshits
%A V. S. Sakovich
%T An iterative-marching scheme for calculating the flow round three-dimensional surfaces at low supersonic velocities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1051-1065
%V 31
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a10/
%G ru
%F ZVMMF_1991_31_7_a10
Yu. B. Lifshits; V. S. Sakovich. An iterative-marching scheme for calculating the flow round three-dimensional surfaces at low supersonic velocities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 7, pp. 1051-1065. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_7_a10/

[1] Chakravarthy S. R., Szema K.-Y., “Euler solver for three-dimesional supersonic flows with subsonic pockets”, J. Aircraft, 24:2 (1987), 73–83 | DOI

[2] Lifshits Yu. B., Sakovich V. S., “O potentsialnom priblizhenii v teorii konicheskikh techenii”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1990, no. 3, 112–118 | MR

[3] Siclari M. J., Supersonic nonlinear potential flows with subsonic regions and implicit isentropic shock fitting, AIAA Paper No 1201, 1981 | Zbl

[4] Shankar V., Szema K.-Y., Osher S., “A conservative type dependent full potential method for thetreatment of supersonic flows with embeded subsonic regions”, Proc. AIAA 6-th Comput. Fluid Dynamic Conf. (Danvers, Massachusetts, 1983), 36–47

[5] Lifshits Yu. B., Shagaev A. A., “Proektsionno-setochnaya skhema dlya rascheta obtekaniya profilya transzvukovym potokom”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1163–1176 | MR | Zbl

[6] Jameson A., “Transonic potential flow calculation using conservation form”, Proc. AIAA Second Comput. Fluid Dynamic Conf. (Hartford, Connecticut, 1975), 148–161

[7] Fedorenko P. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[8] South J. C., Keller J. D., Hafez M. M., “Vector processor algorithms for transonic flow calculations”, AIAA Journal, 18:7 (1980), 786–792 | DOI

[9] Butler D. S., “The numerical solution of hyperbolic systems of partial differential equation in three independent variables”, Proc. Roy. Soc. London A, 255 (1960), 232–250 | DOI | MR

[10] M. Khemsh, Dzh. Nilsen, Aerodinamika raket, v. 2, Mir, M., 1989, 255–295