The approximation of generalized stochastic gradients of random regular functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 5, pp. 681-688 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_5_a3,
     author = {A. G. Perevozchikov},
     title = {The approximation of generalized stochastic gradients of random regular functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {681--688},
     year = {1991},
     volume = {31},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a3/}
}
TY  - JOUR
AU  - A. G. Perevozchikov
TI  - The approximation of generalized stochastic gradients of random regular functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 681
EP  - 688
VL  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a3/
LA  - ru
ID  - ZVMMF_1991_31_5_a3
ER  - 
%0 Journal Article
%A A. G. Perevozchikov
%T The approximation of generalized stochastic gradients of random regular functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 681-688
%V 31
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a3/
%G ru
%F ZVMMF_1991_31_5_a3
A. G. Perevozchikov. The approximation of generalized stochastic gradients of random regular functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 5, pp. 681-688. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a3/

[1] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl

[2] Mikhalevich V. S., Gupal A. M., Norkin V. I., Metody nevypukloi optimizatsii, Nauka, M., 1987 | MR | Zbl

[3] Ermolev Yu. M., Metody stokhasticheskogo programmirovaniya, Nauka, M., 1976 | MR

[4] Zavriev S. K., Perevozchikov A. G., “Pryamoi metod Lyapunova v issledovanii prityazheniya traektorii konechno-raznostnykh vklyuchenii”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 22–32 | MR | Zbl

[5] Zavriev S. K., Perevozchikov A. G., “Metod stokhasticheskogo obobschennogo gradienta dlya resheniya minimaksnykh zadach so svyazannymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 491–500 | MR

[6] Minchenko L. I., “Differentsialnye svoistva funktsii maksimuma pri svyazannykh ogranicheniyakh”, Zh. vychisl. matem. i matem. fiz., 24:2 (1984), 210–217 | MR | Zbl

[7] Fedorov V. V., Chislennye metody maksimina, Nauka, M., 1979 | MR

[8] Minchenko L. I., “K vychisleniyu subdifferentsialov marginalnykh funktsii”, Kibernetika, 1986, no. 2, 72–79 | MR

[9] Minchenko L. I., “Vychislenie subdifferentsialov marginalnykh funktsii rasstoyaniya”, Kibernetika, 1989, no. 5, 83–85 | MR | Zbl

[10] Dorofeev P. A., “O nekotorykh svoistvakh metoda obobschennogo gradienta”, Zh. vychisl. matem. i matem. fiz., 25:2 (1985), 181–189 | MR | Zbl

[11] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Nauk. dumka, Kiev, 1979 | MR | Zbl

[12] Pshenichnyi B. N., Neobkhodimye usloviya ekstremuma, Nauka, M., 1982 | MR

[13] Polyak B. T., “Odin obschii metod resheniya ekstremalnykh zadach”, Dokl. AN SSSR, 174:1 (1967), 33–36 | Zbl