On stable convergence of secant methods with projected updates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 5, pp. 654-662 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_5_a1,
     author = {U. Felgenhauer},
     title = {On stable convergence of secant methods with projected updates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {654--662},
     year = {1991},
     volume = {31},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a1/}
}
TY  - JOUR
AU  - U. Felgenhauer
TI  - On stable convergence of secant methods with projected updates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 654
EP  - 662
VL  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a1/
LA  - en
ID  - ZVMMF_1991_31_5_a1
ER  - 
%0 Journal Article
%A U. Felgenhauer
%T On stable convergence of secant methods with projected updates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 654-662
%V 31
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a1/
%G en
%F ZVMMF_1991_31_5_a1
U. Felgenhauer. On stable convergence of secant methods with projected updates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 5, pp. 654-662. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_5_a1/

[1] Bittner L., “Eine Verallgemeinerung des Sekantenverfahrens zur näherungsweisen Berechnung der Nullstellen eines nichtlinearen Gleichungssystems”, Wiss. Z. Techn. Univ. Dresden, 9 (1959/60), 325–329 | MR

[2] Wolfe P., “The secant method for simultaneous nonlinear equations”, Communs ACM, 2 (1959), 2–3

[3] Schwetlick H., Numerische Lösung nichtlinearer Gleichungen, VEB Dtsch. Verl. Wiss., Berlin, 1979 | MR | Zbl

[4] Gragg W. B., Stewart G. W., “A stable variant of the secant method for solving nonlinear equations”, SIAM J. Numer. Analys., 13 (1976), 889–903 | DOI | MR | Zbl

[5] Martinez J. M., Lopes T. L., “Combination of the sequential secant method and Broyden's method with projected updates”, Computing, 25 (1980), 379–386 | DOI | MR | Zbl

[6] Burdakov O. P., “Ustoichivye varianty metoda sekuschikh dlya resheniya sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 23:5 (1983), 1027–1040 | MR | Zbl

[7] Burdakov O. P., “On superlinear convergence of some stable variants of the secant method”, Z. angew. Math. und Mech., 12 (1986), 615–622 | DOI | MR

[8] Kielbasinski A., Schwetlick H., Numerische lineare algebra, VEB Dtsch. Verl. Wiss., Berlin, 1988 | MR | Zbl

[9] Hoffmann W., “Iterative algorithms for Gram-Schmidt orthogonalization”, Computing, 41:4 (1989), 335–348 | DOI | MR | Zbl

[10] Broyden C. G., Dennis J. E. Jr., Moré J. J., “On the local and superlinear convergence of quasi-Newton methods”, J. Inst. Math. Appl., 12 (1973), 223–245 | DOI | MR | Zbl

[11] Dennis J. E. Jr., Moré J. J., “A characterization of superlinear convergence and its application to quasi-Newton methods”, Math. Comput., 28 (1974), 549–560 | DOI | MR | Zbl