A second order numerical method for non-linear singular perturbation problems without turning points
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 4, pp. 522-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_4_a3,
     author = {R. Vulanovi\'c},
     title = {A second order numerical method for non-linear singular perturbation problems without turning points},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {522--532},
     year = {1991},
     volume = {31},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/}
}
TY  - JOUR
AU  - R. Vulanović
TI  - A second order numerical method for non-linear singular perturbation problems without turning points
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 522
EP  - 532
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/
LA  - en
ID  - ZVMMF_1991_31_4_a3
ER  - 
%0 Journal Article
%A R. Vulanović
%T A second order numerical method for non-linear singular perturbation problems without turning points
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 522-532
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/
%G en
%F ZVMMF_1991_31_4_a3
R. Vulanović. A second order numerical method for non-linear singular perturbation problems without turning points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 4, pp. 522-532. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/

[1] Bakhvalov H. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Boglaev I. P., “O chislennom integrirovanii singulyarno-vozmuschennoi zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 25:7 (1985), 1009–1022 | MR | Zbl

[3] Vulanović R., “On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh”, Univ. u Novom Sadu, Zb. rad. Prirod.-mat. fak., Ser. mat., 13 (1983), 187–201 | MR | Zbl

[4] Vulanović R., “A uniform numerical method for quasilinear singular perturbation problems without turning points”, Computing, 41 (1989), 97–106 | DOI | MR | Zbl

[5] Kreiss B., Kreiss H.-O., “Numerical methods for singular perturbation problems”, SIAM J. Numer. Analys., 18:2 (1981), 262–275 | DOI | MR

[6] Vulanović R., “Non-equidistant generalizations of the Guschchin-Shchennikov scheme”, Z. angew. Math. und Mech., 67:12 (1987), 625–632 | DOI | MR | Zbl

[7] Lin Ping, Su Yu-cheng, “Numerical solution of quasilinear singularly perturbed ordinary differentinal equation without turning points”, Appl. Math. and Mech., 10:11 (1989), 1005–1010 | DOI | MR | Zbl

[8] Doolan E. P., Miller J. J. H., Shilders W. H. A., Uniform numerical methods for problems with initial boundary layers, Boole Press, Dublin, 1980 | MR | Zbl

[9] Boglaev Yu. P., “Postroenie chaplyginskimi funktsiyami ravnomernogo priblizheniya k resheniyu odnogo uravneniya s malym parametrom pri proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 11:1 (1971), 96–104 | MR | Zbl

[10] Vulanović R., “Finite-difference schemes for quasilinear singular perturbation problems”, J. Comput. Appl. Math., 26 (1989), 345–365 | DOI | MR | Zbl

[11] Lorenz J., “Stability and monotonicity properties of stiff quasilinear boundary problems”, Univ. u Novom Sadu, Zb. rad. Prirod.-mat. fak., Ser. mat., 12 (1982), 151–175 | MR