@article{ZVMMF_1991_31_4_a3,
author = {R. Vulanovi\'c},
title = {A second order numerical method for non-linear singular perturbation problems without turning points},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {522--532},
year = {1991},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/}
}
TY - JOUR AU - R. Vulanović TI - A second order numerical method for non-linear singular perturbation problems without turning points JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 522 EP - 532 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/ LA - en ID - ZVMMF_1991_31_4_a3 ER -
%0 Journal Article %A R. Vulanović %T A second order numerical method for non-linear singular perturbation problems without turning points %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 522-532 %V 31 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/ %G en %F ZVMMF_1991_31_4_a3
R. Vulanović. A second order numerical method for non-linear singular perturbation problems without turning points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 4, pp. 522-532. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_4_a3/
[1] Bakhvalov H. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[2] Boglaev I. P., “O chislennom integrirovanii singulyarno-vozmuschennoi zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 25:7 (1985), 1009–1022 | MR | Zbl
[3] Vulanović R., “On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh”, Univ. u Novom Sadu, Zb. rad. Prirod.-mat. fak., Ser. mat., 13 (1983), 187–201 | MR | Zbl
[4] Vulanović R., “A uniform numerical method for quasilinear singular perturbation problems without turning points”, Computing, 41 (1989), 97–106 | DOI | MR | Zbl
[5] Kreiss B., Kreiss H.-O., “Numerical methods for singular perturbation problems”, SIAM J. Numer. Analys., 18:2 (1981), 262–275 | DOI | MR
[6] Vulanović R., “Non-equidistant generalizations of the Guschchin-Shchennikov scheme”, Z. angew. Math. und Mech., 67:12 (1987), 625–632 | DOI | MR | Zbl
[7] Lin Ping, Su Yu-cheng, “Numerical solution of quasilinear singularly perturbed ordinary differentinal equation without turning points”, Appl. Math. and Mech., 10:11 (1989), 1005–1010 | DOI | MR | Zbl
[8] Doolan E. P., Miller J. J. H., Shilders W. H. A., Uniform numerical methods for problems with initial boundary layers, Boole Press, Dublin, 1980 | MR | Zbl
[9] Boglaev Yu. P., “Postroenie chaplyginskimi funktsiyami ravnomernogo priblizheniya k resheniyu odnogo uravneniya s malym parametrom pri proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 11:1 (1971), 96–104 | MR | Zbl
[10] Vulanović R., “Finite-difference schemes for quasilinear singular perturbation problems”, J. Comput. Appl. Math., 26 (1989), 345–365 | DOI | MR | Zbl
[11] Lorenz J., “Stability and monotonicity properties of stiff quasilinear boundary problems”, Univ. u Novom Sadu, Zb. rad. Prirod.-mat. fak., Ser. mat., 12 (1982), 151–175 | MR