@article{ZVMMF_1991_31_2_a7,
author = {I. V. Yegorov and O. L. Zaitsev},
title = {An approach to the numerical solution of the bidimensional {Navier{\textendash}Stokes} equations using the direct calculation method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {286--299},
year = {1991},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a7/}
}
TY - JOUR AU - I. V. Yegorov AU - O. L. Zaitsev TI - An approach to the numerical solution of the bidimensional Navier–Stokes equations using the direct calculation method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 286 EP - 299 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a7/ LA - ru ID - ZVMMF_1991_31_2_a7 ER -
%0 Journal Article %A I. V. Yegorov %A O. L. Zaitsev %T An approach to the numerical solution of the bidimensional Navier–Stokes equations using the direct calculation method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 286-299 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a7/ %G ru %F ZVMMF_1991_31_2_a7
I. V. Yegorov; O. L. Zaitsev. An approach to the numerical solution of the bidimensional Navier–Stokes equations using the direct calculation method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 2, pp. 286-299. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a7/
[1] Beam R., Warming R. F., “An implicit factored scheme for the compressible Navier-Stokes equations”, AIAA Journal, 16 (1978), 393–402 | DOI | Zbl
[2] Steger J. L., “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries”, AIAA Journal, 16 (1978), 679–686 | DOI | Zbl
[3] Hollanders H., Devezeaux de Lavergne D., High speed laminar near wake flow calculations by an implicit Navier-Stokes solver, AIAA Paper, 87-1157, 598–607
[4] Tolstykh A. I., “O neyavnykh skhemakh povyshennoi tochnosti dlya sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 339–354 | MR | Zbl
[5] Godunov S. K., Zabrodin A. V., Prokopov G. P., “Raznostnaya skhema dlya dvumernykh nestatsionarnykh zadach gazovoi dinamiki i raschet obtekaniya s otoshedshei udarnoi volnoi”, Zh. vychisl. matem. i matem. fiz., 1:6 (1961), 1020–1050 | MR | Zbl
[6] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77
[7] Chakravarti S. R., Zhem K. I., “Raschet trekhmernykh sverkhzvukovykh techenii s dozvukovymi zonami na osnove uravnenii Eilera”, Aerokosmich. tekhn., 1987, no. 11, 22–35
[8] Chakravarthy S. R., Osher S., High resolution applications of the Osher upwind scheme for the Euler equations, AIAA Paper, 83-1943, 363–372
[9] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[10] Ivanov M. Ya., Krupa V. G., Nigmatullin P. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya integrirovaniya uravnenii Nave-Stoksa”, Zh. vychisl. matem. i matem. fiz., 29:6 (1989), 888–901 | MR | Zbl
[11] Roe P. L., “Approximate Riemann solvers, parameter vektors, and difference scheme”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[12] Babikov P. E., Yegorov I. V., “On one version of the adaptive grid generation to solve evolution problems”, Proc. Soviet Union–Japan SCFD, v. 2, Khabarovsk, 1988, 222–227
[13] George A., “Nested dissection of a regular finite element mesh”, SIAM J. Numer. Analys., 10:2 (1973), 347–363 | DOI | MR
[14] Lipton R. J., Rose D. J., Tarjan R. E., “Generalized nested dissection”, SIAM J. Numer. Analys., 16:2 (1979), 346–358 | DOI | MR | Zbl
[15] Karimov T. X., “O nekotorykh iteratsionnykh metodakh resheniya nelineinykh uravnenii v gilbertovom prostranstve”, Dokl. AN SSSR, 269:5 (1983), 1038–1042 | MR | Zbl
[16] Shvets A. I., Shvets I. T., Gazodinamika blizhnego sleda, Nauk. dumka, Kiev, 1976