@article{ZVMMF_1991_31_2_a5,
author = {A. I. Fedotov},
title = {The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {261--271},
year = {1991},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/}
}
TY - JOUR AU - A. I. Fedotov TI - The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 261 EP - 271 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/ LA - ru ID - ZVMMF_1991_31_2_a5 ER -
%0 Journal Article %A A. I. Fedotov %T The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 261-271 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/ %G ru %F ZVMMF_1991_31_2_a5
A. I. Fedotov. The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 2, pp. 261-271. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/
[1] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. gos. un-ta, Kazan, 1980 | MR
[2] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike, Nauka, M., 1985 | MR | Zbl
[3] Gabdulkhaev B. G., “Polinomialnye approksimatsii po V. K. Dzyadyku reshenii singulyarnykh integralnykh i integro-differentsialnykh uravnenii”, Izv. vuzov. Matem., 1978, no. 6, 51–62 | MR
[4] Matveev A. F., Priblizhennye resheniya nekotorykh singulyarnykh integro-differentsialnykh uravnenii, Preprint No 87, ITEF AN SSSR, M., 1982
[5] Ermolaeva L. B., Approksimativnye svoistva polinomialnykh operatorov i reshenie integralnykh i integro-differentsialnykh uravnenii, Dis. ...kand. fiz.-matem. nauk, Kazansk. inzh.-stroit. in-t, Kazan, 1987
[6] Iokk X., “O skhodimosti raznostnykh metodov dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Izv. AN EstSSR. Fiz., matem., 22:1 (1973), 31–36 | MR | Zbl
[7] Iokk X., “O skhodimosti raznostnykh metodov dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka na neravnomernoi setke”, Izv. AN EstSSR. Fiz., matem., 22:3 (1973), 227–232 | MR
[8] Agachev Yu. R., Splainovye priblizheniya reshenii integralnykh i differentsialnykh uravnenii, Dis. ...kand. fiz.-matem. nauk, Kazansk. gos. un-t, Kazan, 1987
[9] Agachev Yu. R., Skhodimost metoda podoblastei i odnogo «smeshannogo» metoda dlya integralnykh i differentsialnykh uravnenii, Dep. v VINITI, No 9039-V86, 1986
[10] Vainikko G. M., “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhn. Matem. analiz, 16, 1979, 15–53
[11] Vainikko G. M., “O skhodimosti kvadraturno-raznostnykh metodov dlya lineinykh integro-differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 11:3 (1971), 770–776 | MR
[12] Gabdulkhaev B. G., “Pryamye metody resheniya nekotorykh operatornykh uravnenii. I; II; III; IV”, Izv. vuzov. Matem., 1971, no. 11, 33–44 ; No 12, 28–38 ; 1972, No 4, 32–43 ; 1974, No 3, 18–31 | MR
[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR
[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[15] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Nauka, M., 1959 | MR | Zbl