The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 2, pp. 261-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_2_a5,
     author = {A. I. Fedotov},
     title = {The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {261--271},
     year = {1991},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/}
}
TY  - JOUR
AU  - A. I. Fedotov
TI  - The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 261
EP  - 271
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/
LA  - ru
ID  - ZVMMF_1991_31_2_a5
ER  - 
%0 Journal Article
%A A. I. Fedotov
%T The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 261-271
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/
%G ru
%F ZVMMF_1991_31_2_a5
A. I. Fedotov. The convergence of a quadrature-difference method for linear singular integro-differential equations with discontinuous coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 2, pp. 261-271. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_2_a5/

[1] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. gos. un-ta, Kazan, 1980 | MR

[2] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike, Nauka, M., 1985 | MR | Zbl

[3] Gabdulkhaev B. G., “Polinomialnye approksimatsii po V. K. Dzyadyku reshenii singulyarnykh integralnykh i integro-differentsialnykh uravnenii”, Izv. vuzov. Matem., 1978, no. 6, 51–62 | MR

[4] Matveev A. F., Priblizhennye resheniya nekotorykh singulyarnykh integro-differentsialnykh uravnenii, Preprint No 87, ITEF AN SSSR, M., 1982

[5] Ermolaeva L. B., Approksimativnye svoistva polinomialnykh operatorov i reshenie integralnykh i integro-differentsialnykh uravnenii, Dis. ...kand. fiz.-matem. nauk, Kazansk. inzh.-stroit. in-t, Kazan, 1987

[6] Iokk X., “O skhodimosti raznostnykh metodov dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Izv. AN EstSSR. Fiz., matem., 22:1 (1973), 31–36 | MR | Zbl

[7] Iokk X., “O skhodimosti raznostnykh metodov dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka na neravnomernoi setke”, Izv. AN EstSSR. Fiz., matem., 22:3 (1973), 227–232 | MR

[8] Agachev Yu. R., Splainovye priblizheniya reshenii integralnykh i differentsialnykh uravnenii, Dis. ...kand. fiz.-matem. nauk, Kazansk. gos. un-t, Kazan, 1987

[9] Agachev Yu. R., Skhodimost metoda podoblastei i odnogo «smeshannogo» metoda dlya integralnykh i differentsialnykh uravnenii, Dep. v VINITI, No 9039-V86, 1986

[10] Vainikko G. M., “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhn. Matem. analiz, 16, 1979, 15–53

[11] Vainikko G. M., “O skhodimosti kvadraturno-raznostnykh metodov dlya lineinykh integro-differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 11:3 (1971), 770–776 | MR

[12] Gabdulkhaev B. G., “Pryamye metody resheniya nekotorykh operatornykh uravnenii. I; II; III; IV”, Izv. vuzov. Matem., 1971, no. 11, 33–44 ; No 12, 28–38 ; 1972, No 4, 32–43 ; 1974, No 3, 18–31 | MR

[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[15] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Nauka, M., 1959 | MR | Zbl