An iterative method for solving the Cauchy problem for elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 64-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_1_a6,
     author = {V. A. Kozlov and V. G. Maz'ya and A. V. Fomin},
     title = {An iterative method for solving the {Cauchy} problem for elliptic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {64--74},
     year = {1991},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a6/}
}
TY  - JOUR
AU  - V. A. Kozlov
AU  - V. G. Maz'ya
AU  - A. V. Fomin
TI  - An iterative method for solving the Cauchy problem for elliptic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 64
EP  - 74
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a6/
LA  - ru
ID  - ZVMMF_1991_31_1_a6
ER  - 
%0 Journal Article
%A V. A. Kozlov
%A V. G. Maz'ya
%A A. V. Fomin
%T An iterative method for solving the Cauchy problem for elliptic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 64-74
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a6/
%G ru
%F ZVMMF_1991_31_1_a6
V. A. Kozlov; V. G. Maz'ya; A. V. Fomin. An iterative method for solving the Cauchy problem for elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 64-74. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a6/

[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR

[2] Chudov L. A., “Raznostnye metody resheniya zadachi Koshi dlya uravneniya Laplasa”, Dokl. AN SSSR, 143:4 (1962), 798–801

[3] Vabischevich P. N., “O reshenii zadachi Koshi dlya uravneniya Laplasa v dvukhsvyaznoi oblasti”, Dokl. AN SSSR, 241:6 (1978), 1257–1260 | MR

[4] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[5] Vabischevich P. N., Glasko V. V., Kriksin Yu. A., “O reshenii odnoi zadachi Adamara s pomoschyu regulyarizuyuschego po A. N. Tikhonovu algoritma”, Zh. vychisl. matem. i matem. fiz., 19:6 (1979), 1462–1470 | MR

[6] Strakhov V. N., Ivanov S. N., “Metod analiticheskogo prodolzheniya polya potentsialnykh polei”, Aktualnye probl. vychisl. i prikl. matem., Nauka, SO, Novosibirsk, 1983, 195–203 | MR

[7] Tr. Vses. shkoly-seminara (Noorus, 1982), VTs SO AN SSSR, Novosibirsk, 1982

[8] Vasilenko G. I., Taratorin A. M., Vosstanovlenie izobrazhenii, Radio i svyaz, M., 1986

[9] Kryanev A. V., “Iteratsionnyi metod resheniya nekorrektnykh zadach”, Zh. vychisl. matem. i matem. fiz., 14:1 (1974), 25–35

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[11] Domanskii E. N., “Ob ekvivalentnosti skhodimosti regulyariziruyuschego algoritma suschestvovaniyu resheniya nekorrektnoi zadachi”, Uspekhi matem. nauk, 42:5 (1987), 101–118 | MR

[12] Maslov V. P., “Suschestvovanie resheniya nekorrektnoi zadachi ekvivalentno skhodimosti regulyarizatsionnogo protsessa”, Uspekhi matem. nauk, 23:3 (1968), 183–184 | MR | Zbl

[13] Landau L. D., Lifshits E. M., Teoriya uprugosti, Nauka, M., 1987 | MR | Zbl