@article{ZVMMF_1991_31_1_a5,
author = {Yu. B. Suris},
title = {Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {52--63},
year = {1991},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/}
}
TY - JOUR AU - Yu. B. Suris TI - Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 52 EP - 63 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/ LA - ru ID - ZVMMF_1991_31_1_a5 ER -
%0 Journal Article %A Yu. B. Suris %T Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 52-63 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/ %G ru %F ZVMMF_1991_31_1_a5
Yu. B. Suris. Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/
[1] Rakitskii Yu. V., “O nekotorykh svoistvakh reshenii sistem obyknovennykh differentsialnykh uravnenii odnoshagovymi metodami chislennogo integrirovaniya”, Zh. vychisl. matem. i matem. fiz., 1:6 (1961), 947–962 | MR
[2] Suris Yu. B., “O nekotorykh svoistvakh metodov chislennogo integrirovaniya sistem vida $\ddot x=f(x)$”, Zh. vychisl. matem. i matem. fiz., 27:10 (1987), 1504–1515 | MR
[3] Cypis Yu. B., “O kanonichnosti otobrazhenii, porozhdaemykh metodami tipa Runge–Kutty pri integrirovanii sistem $\ddot x=-\partial U/\partial x$”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 202–211
[4] Cypis Yu. B., “O sokhranenii simplekticheskoi struktury pri chislennom reshenii gamiltonovykh sistem”, Chisl. reshenie obyknovennykh differents. ur-nii, IPMatem. AN SSSR, M., 1988, 148–160
[5] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR
[6] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR
[7] Rakitskii Yu. V., Ustinov S. M., Chernorutskii N. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR