Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 52-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_1_a5,
     author = {Yu. B. Suris},
     title = {Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {52--63},
     year = {1991},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/}
}
TY  - JOUR
AU  - Yu. B. Suris
TI  - Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 52
EP  - 63
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/
LA  - ru
ID  - ZVMMF_1991_31_1_a5
ER  - 
%0 Journal Article
%A Yu. B. Suris
%T Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 52-63
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/
%G ru
%F ZVMMF_1991_31_1_a5
Yu. B. Suris. Preservation of integral invariants for the numerical solution of systems of the form $\ddot x=K\dot x+f(x)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 52-63. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a5/

[1] Rakitskii Yu. V., “O nekotorykh svoistvakh reshenii sistem obyknovennykh differentsialnykh uravnenii odnoshagovymi metodami chislennogo integrirovaniya”, Zh. vychisl. matem. i matem. fiz., 1:6 (1961), 947–962 | MR

[2] Suris Yu. B., “O nekotorykh svoistvakh metodov chislennogo integrirovaniya sistem vida $\ddot x=f(x)$”, Zh. vychisl. matem. i matem. fiz., 27:10 (1987), 1504–1515 | MR

[3] Cypis Yu. B., “O kanonichnosti otobrazhenii, porozhdaemykh metodami tipa Runge–Kutty pri integrirovanii sistem $\ddot x=-\partial U/\partial x$”, Zh. vychisl. matem. i matem. fiz., 29:2 (1989), 202–211

[4] Cypis Yu. B., “O sokhranenii simplekticheskoi struktury pri chislennom reshenii gamiltonovykh sistem”, Chisl. reshenie obyknovennykh differents. ur-nii, IPMatem. AN SSSR, M., 1988, 148–160

[5] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR

[6] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[7] Rakitskii Yu. V., Ustinov S. M., Chernorutskii N. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR