A high-accuracy three-point spline scheme
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 40-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_1_a4,
     author = {T. Zhanlav},
     title = {A~high-accuracy three-point spline scheme},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {40--51},
     year = {1991},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a4/}
}
TY  - JOUR
AU  - T. Zhanlav
TI  - A high-accuracy three-point spline scheme
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 40
EP  - 51
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a4/
LA  - ru
ID  - ZVMMF_1991_31_1_a4
ER  - 
%0 Journal Article
%A T. Zhanlav
%T A high-accuracy three-point spline scheme
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 40-51
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a4/
%G ru
%F ZVMMF_1991_31_1_a4
T. Zhanlav. A high-accuracy three-point spline scheme. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 40-51. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a4/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[2] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[3] Ilin V. P., “O onlainovykh resheniyakh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:3 (1978), 620–627 | MR

[4] Zhanlav T., Zhidkov E. P., Primenenie ekstrapolyatsii po Richardsonu i kubicheskim splainam, Preprint P11-86-415, OIYaI, Dubna, 1986 | MR

[5] Zhanlav T., Ob approksimatsii reshenii kraevykh zadach kubicheskimi splainami, Preprint R11-89-343, OIYaI, Dubna, 1989

[6] Dronov S. G., Ligun A. A., “Ob odnom splain-metode resheniya kraevoi zadachi”, Ukr. matem. zh., 41:5 (1989), 703–707 | MR

[7] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[8] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[9] Kollatts L., Chislennye metody resheniya differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1953

[10] Zhanlav T., “O predstavlenii interpolyatsionnykh kubicheskikh splainov cherez $B$-splainy”, Metody splain-funktsii, Vychisl. sistemy, 87, Novosibirsk, 1981, 3–10 | MR | Zbl

[11] Peire R., Teilor T. D., Vychislitelnye metody v zadachakh mekhaniki zhidkosti, Gidrometeoizdat, L., 1986 | MR

[12] Gavurin M. K., “Nelineinye funktsionalnye uravneniya i nepreryvnye analogi iterativnykh metodov”, Izv. vuzov. Ser. matem., 1958, no. 5 (6), 18–31 | MR | Zbl

[13] Zhidkov E. P., Makarenko G. I., Puzynin I. V., “Nepreryvnyi analog metoda Nyutona v nelineinykh zadachakh fiziki”, Fiz. elementarnykh chastits i at. yadra, 4:1 (1973), 127–165 | MR

[14] Ermakov V. V., Kalitkin N. N., “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 21:2 (1981), 491–497 | MR | Zbl

[15] Puzynin I. V., Nepreryvnyi analog metoda Nyutona dlya chislennogo resheniya zadach kvantovoi mekhaniki, Avtoref. dis. ...dokt. fiz.-matem. nauk, OIYaI, Dubna, 1978, 11-12016

[16] Davydov A. S., Kvantovaya mekhanika, Nauka, M., 1973 | MR

[17] Babikov V. V., Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1988 | MR

[18] Zhanlav T., Puzynin I. V., Rakitskii A. V., Skhema splain-kollokatsii dlya chislennogo resheniya odnokanalnoi zadachi rasseyaniya, Preprint R11-88-823, OIYaI, Dubna, 1988 | MR

[19] Melezhik V. S., Nepreryvnyi analog metoda Nyutona v mnogokanalnoi zadache rasseyaniya, Preprint R4-84-643, OIYaI, Dubna, 1985

[20] Puzynin I. V., Puzynina T. P., Strizh T. A., SLIPH4 — programma dlya chislennogo resheniya zadachi Shturma–Liuvillya, Preprint R11-87-332, OIYaI, Dubna, 1987 | MR