@article{ZVMMF_1991_31_1_a18,
author = {A. N. Ermilov and V. I. Kabanovich and A. M. Kurbatov},
title = {Recursive definition of the {Green} function of a difference equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {166--169},
year = {1991},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a18/}
}
TY - JOUR AU - A. N. Ermilov AU - V. I. Kabanovich AU - A. M. Kurbatov TI - Recursive definition of the Green function of a difference equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 166 EP - 169 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a18/ LA - ru ID - ZVMMF_1991_31_1_a18 ER -
%0 Journal Article %A A. N. Ermilov %A V. I. Kabanovich %A A. M. Kurbatov %T Recursive definition of the Green function of a difference equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 166-169 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a18/ %G ru %F ZVMMF_1991_31_1_a18
A. N. Ermilov; V. I. Kabanovich; A. M. Kurbatov. Recursive definition of the Green function of a difference equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 166-169. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a18/
[1] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969
[2] McCrea W. H., Whipple F. J. W., “Random pathes in two and three dimension”, Proc. Roy. Soc. Edinburgh, 60 (1940), 281–298 | MR
[3] Andreev V. B., Kryakvina S. A., “O fundamentalnom reshenii odnoparametricheskogo semeistva raznostnykh approksimatsii operatora Laplasa na ploskosti”, Zh. vychisl. matem. i matem. fiz., 13:2 (1973), 343–355 | MR | Zbl
[4] Zemla A., “O fundamentalnom reshenii setochnoi approksimatsii operatora Gelmgoltsa”, Zh. vychisl. matem. i matem. fiz., 25:9 (1985), 1416–1421 | MR | Zbl
[5] Ermilov A. N., Kabanovich V. I., Kurbatov A. M., “Ob odnom analiticheskom predstavlenii funktsii Grina konechno-raznostnogo uravneniya Laplasa”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1258–1260 | MR | Zbl
[6] Ermilov A. N., Kabanovich V. I., Kurbatov A. M., “Analytic representation of probability potential in the theory of random walks on a lattice”, Internat. J. Mod. Phys. B, 1 (1987), 1265–1275 | DOI