An iterative algorithm for determining the regularization parameter in the method of least discrepancy estimation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 151-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_1_a14,
     author = {A. M. Levin},
     title = {An iterative algorithm for determining the regularization parameter in the method of least discrepancy estimation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {151--153},
     year = {1991},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a14/}
}
TY  - JOUR
AU  - A. M. Levin
TI  - An iterative algorithm for determining the regularization parameter in the method of least discrepancy estimation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 151
EP  - 153
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a14/
LA  - ru
ID  - ZVMMF_1991_31_1_a14
ER  - 
%0 Journal Article
%A A. M. Levin
%T An iterative algorithm for determining the regularization parameter in the method of least discrepancy estimation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 151-153
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a14/
%G ru
%F ZVMMF_1991_31_1_a14
A. M. Levin. An iterative algorithm for determining the regularization parameter in the method of least discrepancy estimation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 1, pp. 151-153. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_1_a14/

[1] Morozov V. A., “O vychislenii nizhnikh granei funktsionalov po priblizhennoi informatsii”, Zh. vychisl. matem. i matem. fiz., 13:4 (1973), 1045–1049 | MR | Zbl

[2] Levin A. M., “O regulyarizatsii vychisleniya nizhnikh granei funktsionalov”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1123–1128 | MR | Zbl

[3] Levin A. M., “O vychislenii mery nesovmestnosti operatornykh uravnenii I roda”, Zh. vychisl. matem. i matem. fiz., 26:4 (1986), 499–507 | MR | Zbl

[4] Levin A. M., “O modifikatsii metodov Nyutona i sekuschikh i ikh primenenii v regulyarizuyuschikh algoritmakh”, Zh. vychisl. matem. i matem. fiz., 28:8 (1988), 1123–1134 | MR

[5] Gordonova V. I., Morozov V. A., “Chislennye algoritmy vybora parametra v metode regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 13:3 (1973), 539–545 | MR

[6] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Regulyariziruyuschie algoritmy i apriornaya informatsiya, Nauka, M., 1983 | MR

[7] Poluektov A. R., “Metod posledovatelnykh priblizhenii vybora parametra regulyarizatsii pri chislennom reshenii nekorrektnykh zadach”, Zh. vychisl. matem. i matem. fiz., 29:11 (1989), 1734–1737 | MR