The minimax problem of $M$-travelling salesmen
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 12, pp. 1899-1905 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_12_a12,
     author = {A. O. Alekseev},
     title = {The minimax problem of $M$-travelling salesmen},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1899--1905},
     year = {1991},
     volume = {31},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a12/}
}
TY  - JOUR
AU  - A. O. Alekseev
TI  - The minimax problem of $M$-travelling salesmen
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1899
EP  - 1905
VL  - 31
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a12/
LA  - ru
ID  - ZVMMF_1991_31_12_a12
ER  - 
%0 Journal Article
%A A. O. Alekseev
%T The minimax problem of $M$-travelling salesmen
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1899-1905
%V 31
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a12/
%G ru
%F ZVMMF_1991_31_12_a12
A. O. Alekseev. The minimax problem of $M$-travelling salesmen. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 12, pp. 1899-1905. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a12/

[1] Svestka G. A., Huckfeldt V. E., “A computational experience with an $M$-salesman traveling salesman problem”, Manag. Sci., 19:7 (1973), 790–799 | DOI | Zbl

[2] Bellmore M., Honig S., “Transformation of multisalesman problem to the standart traveling salesman problem”, J. A.C. M., 21:3 (1974), 500–504 | MR | Zbl

[3] Rao M. R., “A note on the multiple traveling salesman problem”, Operat. Res., 28:3(1) (1980), 628–632 | DOI | Zbl

[4] Husban A., “An exact solution method for the MJSP”, J. Operat. Res. Soc., 40:5 (1989), 461–469 | Zbl

[5] Laporte G., Nobert J., “A cutting planes algorithm for the $M$-salesman problem”, J. Operat Res. Soc., 31:11 (1980), 1017–1023 | MR | Zbl

[6] Melamed I. I., “K zadache neskolkikh kommivoyazherov”, Mezhvuzovskii sb., 647, MIIT, M., 1981, 117–119

[7] Melamed I. I., Sergeev S. I., Sigal I. X., “Zadacha kommivoyazhera. Priblizhennye algoritmy”, Avtomatika i telemekhan., 1989, no. 11, 3–24 | MR

[8] Alekseev A. O., Alekseev O. G., Anisimov V. G., Anisimov E. G., “Primenenie dvoistvennosti dlya povysheniya effektivnosti metoda vetvei i granits pri reshenii zadachi o rantse”, Zh. vychisl. matem. i matem. fiz., 25:11 (1985), 1566–1573

[9] Alekseev A. O., Alekseev O. G., Kiselev V. D., “Primenenie dvoistvennosti dlya opredeleniya poryadka vetvleniya peremennykh i otsenki granits pri reshenii zadachi o rantse”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 630–631 | MR

[10] Little J., Murty K., Sweeny D., Karel C., “An algorithm for the traveling salesman problem”, Operat. Res., 11:6 (1963), 972–989 | DOI | Zbl

[11] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978 | MR