@article{ZVMMF_1991_31_12_a10,
author = {S. V. Svistunov},
title = {An algorithm for the parametric search of elliptic~$I$- and $S$-hulls of a convex compact set},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1885--1896},
year = {1991},
volume = {31},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a10/}
}
TY - JOUR AU - S. V. Svistunov TI - An algorithm for the parametric search of elliptic $I$- and $S$-hulls of a convex compact set JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 1991 SP - 1885 EP - 1896 VL - 31 IS - 12 UR - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a10/ LA - ru ID - ZVMMF_1991_31_12_a10 ER -
%0 Journal Article %A S. V. Svistunov %T An algorithm for the parametric search of elliptic $I$- and $S$-hulls of a convex compact set %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 1991 %P 1885-1896 %V 31 %N 12 %U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a10/ %G ru %F ZVMMF_1991_31_12_a10
S. V. Svistunov. An algorithm for the parametric search of elliptic $I$- and $S$-hulls of a convex compact set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 12, pp. 1885-1896. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_12_a10/
[1] Danzer L., Laugwitz D., Lenz H., “Über das Löwnersche Ellipsoid und sein Analogen unter den einem Eikörper einbeschriebenen Ellipsoiden”, Arch. Math., 8 (1957), 214–219 | DOI | MR | Zbl
[2] Zaguskin V. L., “O vpisannykh i opisannykh ellipsoidakh ekstremalnogo ob'ema”, Uspekhi matem. nauk, 13:6 (1958), 89–93 | MR | Zbl
[3] Kozlov V. P., Svistunov S. V., “Approksimatsiya mnozhestva vozmozhnykh znachenii spektralnykh koeffitsientov yarkosti estestvennykh landshaftov”, Biosfera i klimat po dannym kosmich. issl., I Vses. konf., Baku, 1982, 206–208
[4] Barnes E. R., “An algorithm for separating patterns by ellipsoids”, IBM J. Res. Development, 26 (1982), 759–764 | DOI | MR | Zbl
[5] Kalinin V. H., Shikin E. V., “O postroenii ellipsoidov ekstremalnogo ob'ema”, Izv. AN SSSR. Tekhn. kibernetika, 1987, no. 4, 60–65 | MR
[6] Antsiferov E. G., “K metodu ellipsoidov v vypuklom programmirovanii”, Modeli i metody issl. operatsii, Sibirskii energetich. in-t, Novosibirsk, 1988, 4–22 | MR
[7] Bland R. G., Goldfarb D., Todd M. J., “The ellipsoid method: a survey”, Operat. Res., 29 (1981), 1039–1091 | DOI | MR | Zbl
[8] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR
[9] Kozlov V. P., Svistunov S. V., “Modifikatsiya vychislitelnoi protsedury Fedorova - Uinna primenitelno k opredeleniyu ellipticheskoi obolochki zadannoi sistemy vektorov”, Zh. vychisl. matem. i matem. fiz., 31:8 (1991), 1243–1250 | MR
[10] Svistunov S. V., “Obrabotka mnogozonalnykh dannykh distantsionnogo zondirovaniya metodom ellipticheskoi approksimatsii”, Issled. Zemli iz kosmosa, 1990, no. 3, 89–97
[11] Shor N. Z., Stetsenko S. I., “Ispolzovanie tochnykh shtrafov pri postroenii opisannykh ellipsoidov minimalnogo ob'ema”, Kibernetika, 1989, no. 2, 117–119 | MR
[12] Kiefer J., Wolfowitz J., “The equivalence of two extremum problems”, Canad. J. Math., 12 (1960), 363–366 | DOI | MR | Zbl
[13] Silvey S. D., Sibson R., “Discussion of Dr Wynn's and Dr Laycock's papers”, J. Roy. Statist. Soc. B, 42 (1972), 174–175; 181–183
[14] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[15] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR
[16] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR
[17] Murtaf B., Sovremennoe lineinoe programmirovanie, Mir, M., 1984 | MR
[18] Pardalos P. M., Bosen J. B., “Methods for global concave minimization: a bibliographic survey”, SIAM Rev., 28 (1986), 367–379 | DOI | MR | Zbl
[19] Altherr W., “An algorithm for enumerating all vertices of a convex polyhedron”, Computing, 15 (1975), 181–193 | DOI | MR | Zbl