The construction of regular grids on $n$-dimensional surfaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 11, pp. 1670-1683 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_1991_31_11_a5,
     author = {V. D. Liseikin},
     title = {The construction of regular grids on $n$-dimensional surfaces},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1670--1683},
     year = {1991},
     volume = {31},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a5/}
}
TY  - JOUR
AU  - V. D. Liseikin
TI  - The construction of regular grids on $n$-dimensional surfaces
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 1991
SP  - 1670
EP  - 1683
VL  - 31
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a5/
LA  - ru
ID  - ZVMMF_1991_31_11_a5
ER  - 
%0 Journal Article
%A V. D. Liseikin
%T The construction of regular grids on $n$-dimensional surfaces
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 1991
%P 1670-1683
%V 31
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a5/
%G ru
%F ZVMMF_1991_31_11_a5
V. D. Liseikin. The construction of regular grids on $n$-dimensional surfaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 31 (1991) no. 11, pp. 1670-1683. http://geodesic.mathdoc.fr/item/ZVMMF_1991_31_11_a5/

[1] Thomas P. D., “Composite three-dimensional grids generated by elliptic systems”, AIAA Journal, 20:9 (1982), 1195–1202 | DOI | Zbl

[2] Takagi T., Miki K., Chen B. C. J., Sha U. T., “Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrarily curved surfaces”, J. Comput. Phys., 58 (1985), 67–79 | DOI | Zbl

[3] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation. Foundations and applications, North-Holland, N. Y., 1985 | MR | Zbl

[4] Warsi Z. U. A., Tiarn W. N., “Surface mesh generation using elliptic equations”, Numer. Grid Generation in Comput. Fluid Dynamics, Pineridge Press, Swansea, UK, 1986, 95–110

[5] Lee K. D., Loellbach J. M., “Geometry-adaptive surface grid generation using a parametric projection”, J. Aircraft, 26:2 (1989), 162–167 | DOI

[6] Steinbrenner J. P., Anderson D. A., “Three-dimensional parametric block grid generation with localized solution adaption”, Numer. Grid Generation in Comput. Fluid Mechanics' 80, Pineridge Press, L., 1988, 539–548

[7] Saltzman J., “Variational methods for generating meshes on surfaces in three dimensions”, J. Comput. Phys., 63 (1986), 1–19 | DOI | MR | Zbl

[8] Pearce D., Optimized grid generation with geometry definition decoupled, AIAA Paper 90-0332, 1990

[9] Yanenko H. H., Danaev H. T., Liseikin V. D., “O variatsionnom metode postroeniya setok”, Chisl. metody mekhan. sploshnoi sredy, 8, no. 4, VTs SO AN SSSR, Novosibirsk, 1977, 157–163 | MR

[10] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46 (1982), 342–368 | DOI | MR | Zbl

[11] Sidorov A. F., Shabashova T. H., “Ob odnom metode rascheta optimalnykh raznostnykh setok dlya mnogomernykh oblastei”, Chisl. metody mekhan. sploshnoi sredy, 12, no. 5, VTs SO AN SSSR, Novosibirsk, 1981, 106–123

[12] Jacquotte O.-P., “A mechanical model for a new grid generation method in computational fluid dynamics”, Comput Math. and Appl. Mech. Engng., 66 (1988), 323–338 | DOI | MR | Zbl

[13] Prokopov G. P., “Ob organizatsii sravneniya algoritmov i programm postroeniya regulyarnykh dvumernykh setok”, Vopr. atomnoi nauki i tekhn. Ser. matem. modelirovaniya fiz. protsessov, 1989, no. 3, 98–108

[14] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[15] Nakahashi K., Deiwert G. S., “Three-dimensional adaptive grid method”, AIAA Journal, 1986, no. 6, 948–954 | DOI

[16] Belinskii P. P., Godunov S. K., Ivanov Yu. B., Yanenko I. K., “Primenenie odnogo klassa kvazikonformnykh otobrazhenii dlya postroeniya raznostnykh setok v oblastyakh s krivolineinymi koordinatami”, Zh. vychisl. matem. i matem. fiz., 15:6 (1975), 1499–1511 | MR

[17] Ivanenko S. A., Charakhchyan A. A., “Algoritm postroeniya krivolineinykh setok iz vypuklykh chetyrekhugolnikov”, Dokl. AN SSSR, 295:2 (1987), 280–283 | Zbl

[18] Liseikin V. D., Petrenko V. E., Adaptivno-invariantnyi metod chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami, VTs SO AN SSSR, Novosibirsk, 1989 | MR